Propelling policy: LCA take-off for maritime fuels

Ann O'Connor Dr. Loïc Francke

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Status: February 2024

MMMCZCS LCA methodology – External presentation – February 2024

Agenda

Introduction and housekeeping

- The role of LCA in the energy transition
- 3 LCA and policy insights
- 4 Methodology overview
 - Goal and System boundary
- 6 Impact assessment
- 7 Well-to-Tank
- 8 Tank-to-Wake
- Focus areas

0	Panel discussion

Q&A

12 Wrap up

"Progress is impossible without change, and those who cannot change their minds, cannot change anything".

George Bernard Shaw

Join at slido.com #LCA

Contextual setting

Decarbonization relies on selecting fuels that deliver the GHG savings needed to reach 2050 and interim targets. By improving clarity and consistency, decision-makers can improve their fuel selection process, thereby accelerating decarbonization.

LCA is an enabler of the energy transition

Effective policy is needed to send demand signals for alternative marine fuels with low GHG intensity.

Fuel demand certainty begins to increase, lowering the investment risks in low GHG intensity fuels

Enabling fuel production

Fuels that offer reductions in GHG intensity begin to make it to the market.

Market formation

Fuel users can select fuels based on their GHG intensity, leading to a green premium for clean fuels

A global snapshot of lifecycle methodologies used in policy

These methodologies were used in our qualitative assessment of LCA methodologies. Methods were selected based on providing good regional coverage.

Lifecycle methodology	Fuels	Implementation coverage	Feedstock methodology	
RSB Standard Certification	All transport sectors	Global	Global	
RFTO Regulation	All transport sectors	UK	UK	
RED II Directive	All transport sectors	Europe	Europe	
GREET Model	All transport sectors	North America	North America and global	
ICAO-CORSIA Certification	Aviation fuels	EU 28 + 29 regions	Europe and global	
JEC Well-to-Wheel study	All transport sectors	Europe-global	Global	
RenovaBio Regulation	All transport sectors	Brazil	Brazil	

Methodological aspects covered in the assessment

1 IPCC. Definition of terms.

Summary of key findings

Well covered

Aspect is mature and well covered in the methodologies. Only minor challenges outstanding.

Requires greater implementation Aspect is not well covered in the methodologies. Median challenges remain. Implementation lagging Major challenges remaining for implementation. Clear guidance on how to implement is needed

Features of the methodology

Based on technical stds

Agnostic

Detailed

Credit mechanisms

2006 Intergovernmental Panel on Climate Change

ISO14040:2006 – Environmental management – Life cycle assessment, principles, and framework

ISO14044:2006 – Environmental management – Life cycle assessment – Requirements and guidelines

ISO14067:2018 Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification

GHG Protocol Product Life Cycle Accounting and Reporting Standard

Policy and technology agnostic

The methodology doesn't favour any fuels or production technologies. Instead, it aims to evaluate all fuels on their associated climate burdens.

It doesn't aim to achieve any policy outcome but merely drive consistency and standardisation.

Technical detailed

It is sufficiently detailed to ensure consistency in the results – aiding fuel GHG intensity comparisons. Differentiating climate performance.

Supports effective implementation.

Credit mechanisms for avoided climate burdens

The methodology identify potential credit mechanisms that can be achieved by the fuels. We have done this to support good fuel production practices and aid market development.

Future development of the methodology – industry "gold standard"

MMMCZCS LCA methodology

Goal and Scope

A methodology to support all actors of the maritime fuels

Page 12

Assess GWP of alternative maritime fuels

System boundary

The methodology covers the entire life cycle of the fuel, **from the Well** up to fuel utilization on board the vessel, expressed as fuel utilized in fuel converter (**Wake**)

A functional unit to assess fuel utilization onboard

FU = 1MJ of fuel LHV used in maritime vessel by the maritime fuel converter

This **global warming potential impact** is expressed as grams CO₂eq per functional unit:

gCO₂eq/MJ fuel LHV used in maritime vessel by the maritime fuel converter

MMMCZCS LCA methodology

Impact assessment

Global warming potential (GWP) impact assessment

Global warming potential (GWP) impact assessment

Total life cycle GWP is estimated using the life cycle emissions of different GHGs (including but not limited to CO_2 , CH_4 , and N_2O) combined with the corresponding GWP over 100 years (GWP100) extracted from the IPCC Sixth Assessment Report or a subsequent IPCC assessment report.

Greenhouse gas	GWP100 (gCO ₂ eq/gGHG)
Carbon dioxide (CO ₂)	1
Methane (CH ₄)	29.8
Nitrous oxide (N ₂ O)	273

Global warming potential (GWP) impact assessment

Total life cycle GWP is estimated using the life cycle emissions of different GHGs (including but not limited to CO_2 , CH_4 , and N_2O) combined with the corresponding GWP over 100 years (GWP100) extracted from the IPCC Sixth Assessment Report or a subsequent IPCC assessment report.

Life cycle impact as GWP over a 20-year horizon (GWP20) may also be calculated separately if desired and subject to data availability for GWP20 emissions factors $GWP_i = \sum_{j=1}^n mass \ GHG_i \times GWP_i$

Greenhouse gas	GWP100 (gCO ₂ eq/gGHG)	GWP20 (gCO ₂ eq/gGHG)
Carbon dioxide (CO ₂)	1	1
Methane (CH ₄)	29.8	82.5
Nitrous oxide (N ₂ O)	273	273

A detailed accounting of emissions and credits

Accounting emission from the Well-to-Tank stages

Well-to-tank activities associated with biofuels

Feedstock cultivation	Direct land use change (dLUC)	Feedstock collection and transport	Feedstock conditioning	Biofuel production	Fugitive emissions	Biofuel production emission credits	Biofuel distribution (transport, storage, and bunkering)
Agriculture processes	Emissions from carbon	Fuels and energy sources	Fuels and energy sources	Energy sources use for	Unintentional or	Improved agricultural	Fuels and energy source
Fertilizer application	stock changes caused by a default 20-year	use during feedstock extraction/collection	use during pre- processing	biofuel production	accidental releases of GHGs, such as CH ₄ and	management	use for biofuel transport, distribution, and
Pesticide application	conversion	Fuels and energy sources		biofuel production, such		Improved manure handling	bunkening
Water extraction and	×	 use during intermediate transport 		as chemicais	Unintentional or accidental GHG releases	Application of digestate	Fuels and energy sources use during biofuel storage
irrigation				Fuel and energy sources use for biofuel temporary	from biofuel during the WTT stages	to land	Fugitive emissions during
Fuel use during harvesting, tillage				storage)	Biochar application to land	biofuel transport, distribution, and
Fuels and energy use				GHG emissions during biofuel production		Provision of excess heat	bunkering
during onsite feedstock				processes	J	or electricity to the local	Boil-off emissions to air
storage				Emission of CO ₂ due to		giù	storage
Biogenic CO ₂ sequestration during				incomplete CO ₂ capture		CO ₂ emissions from carbon biogenic origin	
plant growth				Emissions for biofuel conditioning for transportation (compression, liquefaction)		Permanent storage of captured CO ₂	

Well-to-tank activities associated with e-fuels

Feedstocks extraction/ production	Fugitive emissions during feedstocks extraction/production	Feedstock collection and transport	e-fuel production	(Fugitive emissions) during e- fuel production	e-fuel production emission credits	e-fuel distribution (transport, storage, and bunkering)
GHG emissions from biogenic carbon feedstock acquisition for e-fuel production GHG emissions from direct air capture (DAC) operations for e-fuel production GHG emissions from nitrogen extraction and processing for e-fuel production GHG emissions from water extraction and processing for e-fuel production Off-grid electricity production (emissions associated with the operational part of the life cycle)	Unintentional or accidental releases of GHGs relating to feedstocks extraction, production, and transport	Fuels and energy sources use during feedstocks pre- processing for transportation to e-fuel production site Fuels and energy sources use during feedstocks transport to e-fuel production site	Consumable use for e-fuel production, such as chemicals Fuels and energy sources use for e-fuel production GHG emissions during e-fuel production processes Fuels and energy sources use for e-fuel temporary storage e-fuel conditioning for transportation (compression, liquefaction)	Unintentional or accidental releases of GHGs, such as CH ₄ and CO ₂ Unintentional or accidental GHG releases from e-fuel during the WTT stages	Provision of excess electricity to the local grid Permanent storage of captured CO ₂ CO ₂ emissions from carbon of biogenic origin	Fuels and energy sources use for e-fuel transport, distribution, and bunkering Fuels and energy sources use during e-fuel storage Fugitive emissions during e- fuel transport, distribution, and bunkering Boil-off emissions to air during liquified fuel storage

Use of consumables

Well-to-tank activities associated with blue fuels

Feedstocks extraction/ production	(Fugitive emissions) feedstock extraction/production	Feedstock collection and transport	Blue fuel production	Fugitive emissions during blue fuel production	Blue fuel production emissions credits	Blue fuel distribution (transport, storage, and bunkering)
Natural gas extraction, flaring venting, processing, and transport Water and oxygen extraction and processing Off-grid electricity production (emissions associated with the operational part of the lif cycle) Fuels and energy sources use Use of consumables	Unintentional or accidental releases of GHGs relating to feedstock extraction, production, and transport	Fuels and energy sources use during feedstocks pre- processing for transportation to blue fuel production site Fuels and energy sources use during feedstocks transport to blue fuel production site	Energy source use for blue fuel production Consumables use for blue fuel production, such as chemicals Emission from CO ₂ capture, temporary storage, transport, and sequestration GHG emissions during blue- fuel production processes Fuel and energy sources use for blue fuel temporary storage Blue fuel conditioning for transportation (compression,	Unintentional or accidental releases of GHGs, such as CH ₄ and CO ₂ Unintentional or accidental GHG releases from blue fuel during the WTT stages Unintentional or accidental releases of GHG relating to captured CO ₂ temporary storage, transport, and sequestration	Provision of excess electricity to the local grid Permanent storage of captured CO ₂ CO ₂ emissions from carbon of biogenic origin	Energy source use for blue fuel transport, distribution, and bunkering Energy sources use during blue fuel storage Fugitive emissions during blue fuel transport, distribution, and bunkering Boil-off emissions to air during liquified fuel storage

Tank-to-Wake

GHG emission details

$$C_{fuel} = 100\% = C_{fuel_used} + C_{fug} + C_{slip}$$
$$C_{fuel_used} = 1 - \frac{(C_{fug} + C_{slip})}{100}$$

Accounting fuel emission in Tank-to-Wake stage

$$E_{stage 5} = e_{5,fug} + e_{slip} + e_{fc} + e_{fu} + (e_{ccsp} - e_{ccs})_{5} + (e_{cpm} - e_{cpc})_{5} - e_{5,c}$$

$$e_{5,fug} = \frac{C_{fug}}{100} \times \frac{GWP_{fuel}}{LHV_{fuel}}$$

$$e_{slip} = \frac{C_{slip}}{100} \times \frac{GWP_{fuel}}{LHV_{fuel}}$$

$$e_{fc} = \frac{C_{fuel_use}}{100} \times \frac{(C_{fc,CO_{2}} \times GWP_{CO_{2}} + C_{fc,CH_{4}} \times GWP_{CH_{4}} + C_{fc,N_{2}O} \times GWP_{N_{2}O})_{fc}}{LHV_{fuel}}$$

Accounting emission from consumables used onboard

The conversion of maritime fuel in the energy converter may require the utilization of specific consumables (pilot fuel, additives, oils and lubricants).

The emissions from these consumables required for the utilization of the maritime fuel in the maritime fuel converter must be included in e_{fu} .

$$e_{fu} = \sum_{k} e_{fu,k} = \sum_{k} (C_{consumable \ k} \times GWP_{consumable \ k})$$

 $E_{stage 5} = e_{5,fug} + e_{slip} + e_{fc} + \frac{e_{fu}}{e_{fu}} + (e_{ccsp} - e_{ccs})_{5} + (e_{cpm} - e_{cpc})_{5} - e_{5,c}$

Focus on multifunctionality consideration

Considering multifunctionality

Multifunctionality refers to a situation where a product or process provides multiple outputs simultaneously.

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Focus on CCS chain consideration

Captured CO₂ transport and storage consideration

$$E_{i,ccs} = (e_{ccsp} - e_{ccs})_i = [(e_{ccs,cs} + e_{fug,ccs,cs}) + (e_{ccs,t} + e_{fug,ccs,t}) + (e_{ccs,inj} + e_{fug,ccs,inj}) + e_{fug,ccs,seq} - e_{ccs,c}] - e_{ccs}$$

Focus on carbon biogenic origin credit

Page 34

Accounting emission credit from carbon origin

When biogenic carbon is used as feedstock, this **biogenic carbon** is incorporated in the feedstock, the product or co-products.

When oxidized, this biogenic carbon mays be released as CO_2 and leads to net zero climate impact of biogenic carbon emitted since the biogenic carbon is released to atmosphere.

To reflect this neutral biogenic carbon cycle, an emission credit , e_c , must be applied for any CO₂ emission to atmosphere, resulting from oxidation of biogenetic carbon

Pending further methodological refinement of this parameter, $e_{i,c}$ value should be set to zero, when C in CO_2 emission is sourced from fossil CCU pathways or recycled carbons

Atmospheric CO₂

$$e_{i,c} = (C_{fCO_{2BIO}} \times GWP_{CO_2})$$

Panel discussion

"Somewhere, something incredible is waiting to be known."

Carl Sagan

Panellists

Dr Selma Brynolf

Researcher and Head of Department, Mechanics and Maritime Sciences at Chalmers University

Professor Michael Hauschild

Department of Environmental and Resource Engineering at DTU

Dr Don O'Connor

Developer of GHG Genius and President of S&T Consultants

Dr Carl Vadenbo

Project Manager at ecoinvent

Dr Michael Wang

Director of the Systems Assessment Center, and interim director of the Energy Systems and Infrastructure Analysis division at Argonne National Laboratory, USA

Discussion points

Importance of policy incentivizing calculation and measurement over default emission factors

Regulation of fuel emissions; Well-to-Wake or Tank-to-Wake.

LCA and academic trade-offs when implemented in policy

The policy landscape; centralized and decentralized policies – risks and opportunities.

Risks associated with double accounting

Join at slido.com #LCA

Thank you

Stay in touch:

ann.oconnor@zerocarbonshipping.com loic.francke@zerocarbonshipping.com Upcoming Webinar: LCA as a Catalyst for Change: The Complex Made Possible

Sign-up today!

