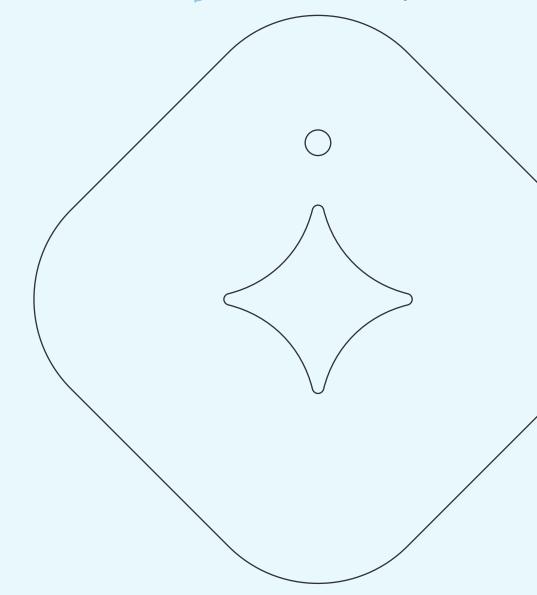
Webinar Preparing for FuelEU Maritime: Deep Dive Together with the European Commission

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

European Commission

Legal disclaimer(s) for presentations

<u>Confidentiality Notice</u>: This presentation contains privileged and confidential information intended for internal use only. If you are not the intended recipient, you are hereby notified that you should not review, use, disclose, distribute, copy or forward this information. If you have received this presentation in error, please notify the sender immediately and delete/destroy any and all copies.


Copyright Notice: ©2022 Fonden Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping. All Rights Reserved.

<u>Competition and Antitrust Compliance Notice</u>: The Center has a policy of strict compliance with all applicable antitrust and competition laws. The antitrust laws prohibit competitors from engaging in actions that could result in an anticompetitive behavior/unreasonable restraint of trade. Consequently, Center management and employees, as well as all participants at Center meetings or events, must avoid discussing certain topics when they are together – both at formal meetings and in informal contacts with other industry members: prices, fees, rates, profit margins, or other terms or conditions of sale (including allowances, credit terms, and warranties); allocation of markets or customers or division of territories; or refusals to deal with or boycotts of suppliers, customers or other third parties, or topics that may lead participants not to deal with a particular supplier, customer or third party. Violations of antitrust or competition laws can pose serious consequences for the Center and its officers, directors, and employees, members and those who use its services and solutions. Be sure to read the Competition and Antitrust Compliance Guidelines contained in your materials. Participants in Center meetings and events have an obligation to terminate any discussion, seek legal counsel's advice, or, if necessary, terminate any meeting if the discussion might be construed to raise antitrust or competition risks.

Introduction to Webinar

Webinar Agenda

- 10:00 10:05
- 10:05 11:00
- 11:00 11:10
- 11:10-11:30

- Introduction
- European Commission Presentation
- Mini Questions & Answers (Q&A)
- Center Presentations
 - 1. Certification of Fuels
- 2. FuelEU Pooling
- 3. Commercial Contracts for FuelEU
- 11:30 12:00 Panel Questions & Answers (Q&A)

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Join at states of the second s

#FuelEU

European Commission Presentations

Ricardo Batista

Policy Officer

European Commission

Directorate-general Mobility and Transport (DG MOVE)

Hans-Peter Geisler

National Expert in Professional Training

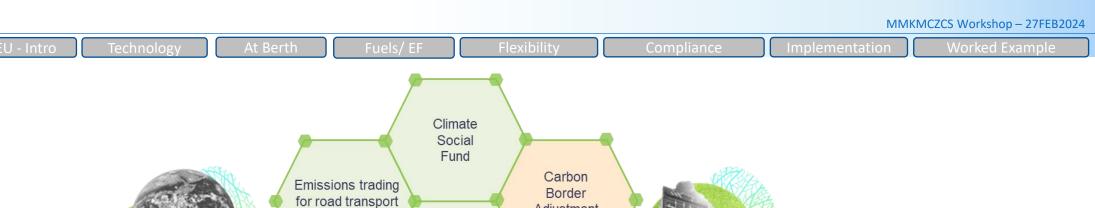
European Commission

Directorate-general Mobility and Transport (DG MOVE)

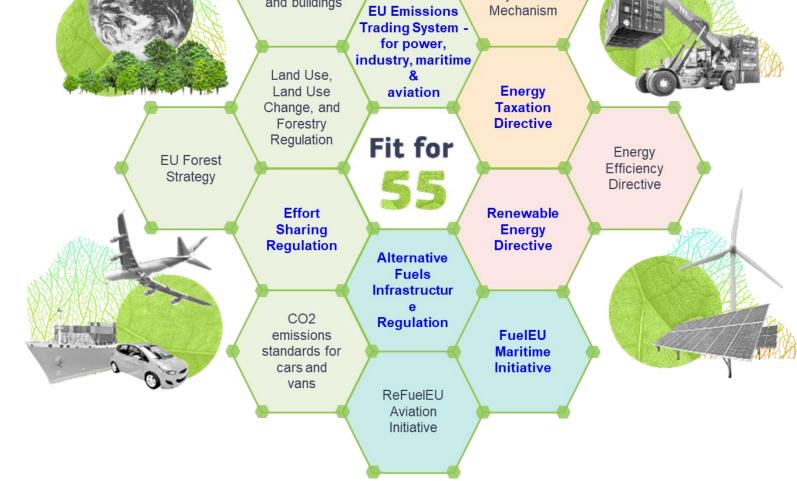
SUSTAINABLE & SMART MOBILITY STRATEGY

FuelEU Maritime

FuelEU Workshop - 16 January 2024Maersk McKinney Moller Center for Zero Carbon Shipping


European Commission Directorate-General for Mobility and Transport Unit D.1 – Maritime Transport and Logistics

Mobility and Transport

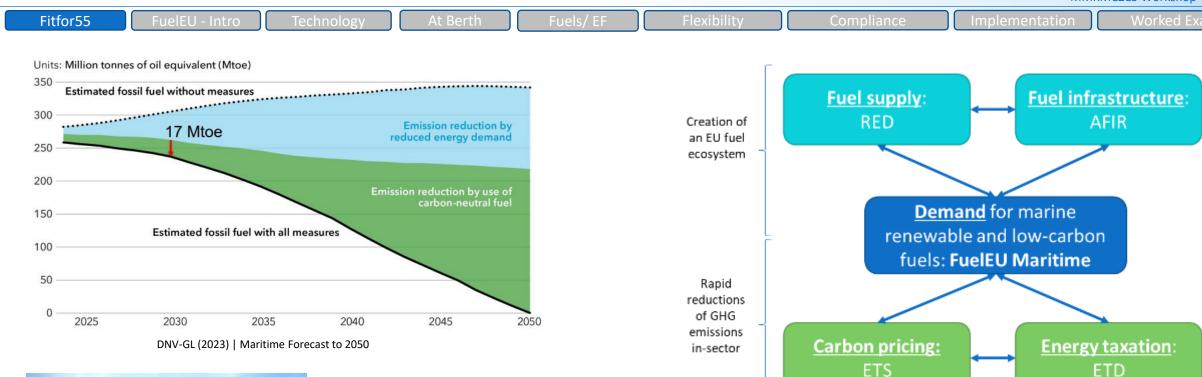


Fitfor55

Adjustment

and buildings

Fitfor55	FuelEU - Intro	Technology	At Berth	Fuels/ EF	Flexibility	Compliance	Implementation	Worked Example


Fitfor5 maritime instrument	In short/ Objective
ETS – Extension of the Emission Trading Scheme to maritime transport	 Carbon tax/ Trading scheme Promote Energy Efficiency and Energy Transition
AFIR – Alternative Fuels Infrastructure Regulatio n	 Require EU ports to develop shore-power Bunkering infrastructure for alternative fuels.
FuelEU Maritime Regulation	• Promote the use of renewable and low-carbon fuels in maritime transport.

MMKMCZCS Workshop – 27FEB2024

MARITIME

Abating maritime emissions requires:

- Improving energy efficiency → <u>using less fuel</u>
- Using renewable and low carbon fuels
 <u>using cleaner fuels</u>

Complementary FuelEU – ETS – AFIR - ETD

- ETS promotes energy savings while FuelEU addresses fuel technology.
- FuelEU addresses fuel demand, RED fuel supply and AFIR fuel distribution
- Taxation levels for renewable and low-carbon fuels and for electricity at berth are consistent with FuelEU goals.

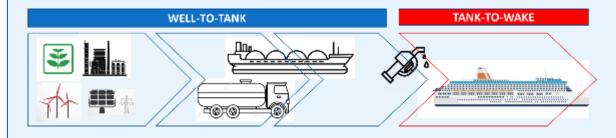
Fitfor55 FuelEU - Intro

Technology

Fuels/ EF

At Berth

Flexibility

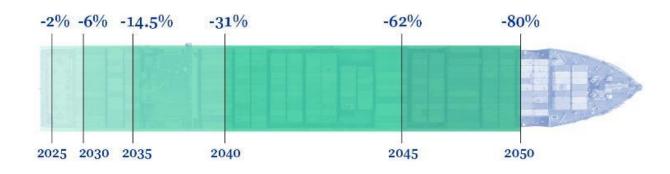

Compliance

- Focus on fuel and on demand promotion of uptake of renewable and low-carbon fuels for maritime transport – complement to Energy Efficiency
- <u>Technology-neutral approach</u>: maritime operators will need to use an increasing proportion of zero and low carbon sustainable fuels, without obligation to use a specific technology
- <u>Establishes</u> target reduction % for the yearly average GHG intensity of the energy used on-board (gCO2eq/MJ)

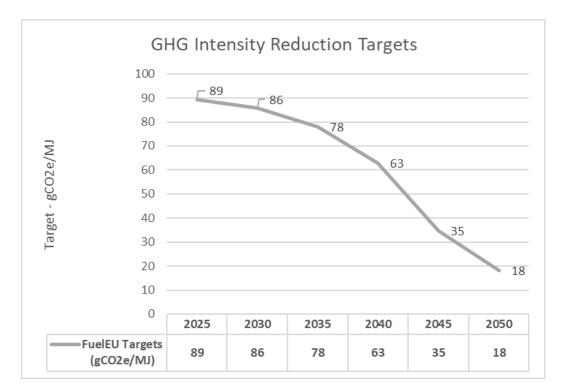
2025	2030	2035	2040	2045	2050
-2%	-6%	-14,5%	-31%	-62%	-80%

- Exemptions: Small islands < 200,000 residents; PSO connections between island MS and another MS and between an island and the mainland of the same MS; outermost regions; transhipment ports; ice class ships and ships navigating in ice.
- Scope: ships above 5000 GT, intra-EU traffic + 50% international, EU ports (same as for ETS)
- Additional requirement for Zero-Emission at berth (OPS and alternative zero-emission technologies) - compulsory as of 2030 for container and passenger vessels (some exemptions up to 2035)

Inclusion of CO₂, methane and nitrous oxide on a full Well-to-Wake calculation: allows fair comparison of fuels

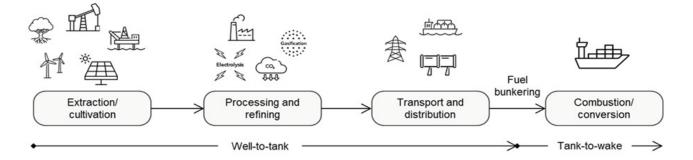


$GHGe [gCO_{2eq}] = (WtT (fuel, electricity) + TtW (combustion, slip))$

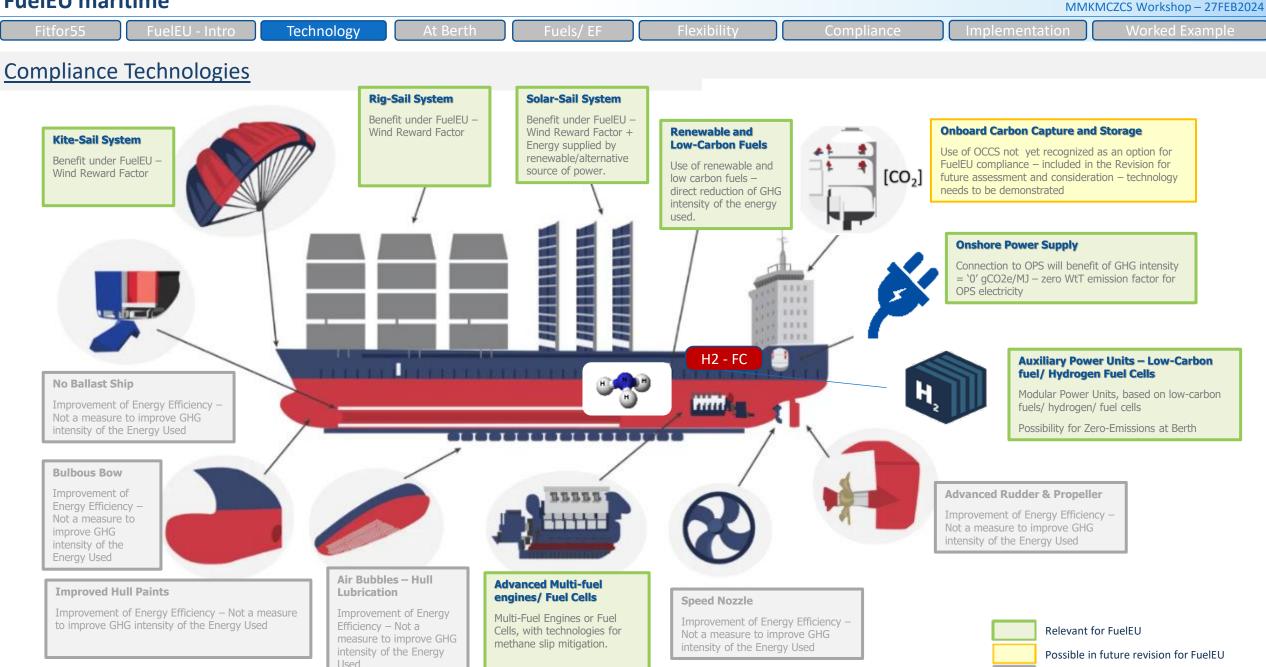

- **Flexibility mechanism** via banking and borrowing: surpluses and (small) deficits can be carried over to the next year
- Voluntary and open **pooling mechanism** to reward/ incentivise overachievers and encourage the rapid deployment of the <u>most advanced options</u>
- Non-compliance deterrent financial penalty
- Monitoring and Reporting is based on **MRV approach**, with some additional data (e.g. calculation of Compliance Balance)

FuelEU maritime GHG Intensity Targets

- General targets: Establishes limits on the annual average GHG intensity of the energy used on-board. Reference value: 91.16 g CO₂eq/MJ.
- Ref Value:
 - Calculated based on 2020 MRV fleet data
 - LNG fuelled fleet considered
 - Fuel Mix as per MRV reported fuel consumption



Life Cycle – Well-to-Wake (WtW) Methodology



$GHGe [gCO_{2eq}] = (WtT (fuel, electricity) + TtW(combustion, slip))$

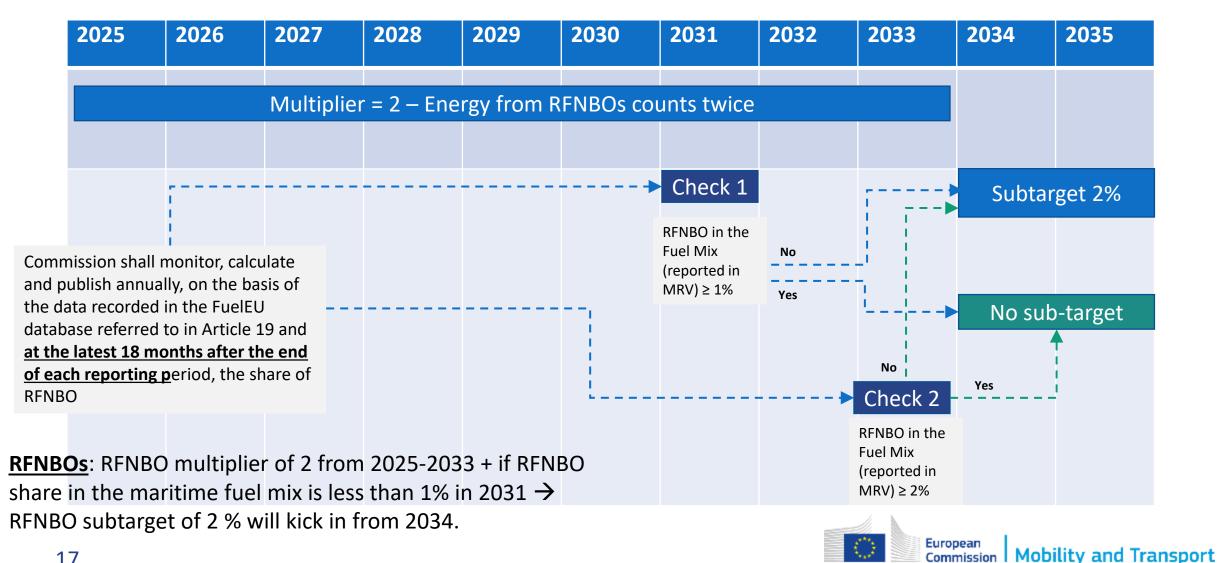
Fuel Product									
Bio-Liquified Natural Gas 🛛 💈	111	1111	10//	111	11	1. 25			
Biocrude			111	0///	11				
Bio-Fischer-Tropsch Diesel				3	1	11			
Biocrude				1	/0/				
e-Fischer-Tropsch Diesel									
e-Methanol									
Pyrolysis Oil						11			
Bio-Methanol						1 !			
Straight Vegetable Oil						i			
Renewable Diesel						11			
Ammonia*		Emissions	Credit		•	1			
Bio-Oil	-		oroun						
Bio-Diesel		Feedstock				•			
Bio-Liquified Natural Gas		Conversion	6			•			
Bio-Lignin Ethanol Oil	1000	Combustion	n				•		
Bio-Fischer-Tropsch Diesel		Well-to-Wak	e				•		
Liquified Natural Gas		Emissions				1	•		
Methanol		 70% Reduc 	tion				•		
Heavy Fuel Oil (0.5% S)		50% Reduc	tion				•		
Ammonia*	1					1			۲
(-200)	(-160)	(-120)	(-80)	(-40)	0	40	80	120	16

(GHG reductions are relative to conventional heavy fuel oil)

Wind Assisted Propulsion

• Wind Assisted Propulsion is incentivized through a reward factor given in function of installed Wind Power

Reward factor (f _{wind})	P _{WIND} /P _{PROP}
0,99	0,05
0,97	0,1
0,95	≥ 0,15


 P_{WIND} - available effective power of the wind-assisted propulsion systems - 2021 guidance on treatment of innovative energy efficiency technologies for calculation and verification of the attained energy efficiency design index (EEDI) and energy efficiency existing ships index (EEXI) (MEPC.1/Circ.896); P_{PROP} - propulsion power of the ship and corresponds to PME as defined in the 2018 guidelines on the method of calculation of the attained EEDI for new ships (IMO resolution MEPC.364(79)) and the 2021 guidelines on the method of calculation of the attained EEXI (IMO resolution MEPC.333(76)).

- GHG intensity $(gCO2e/MJ) = f_{WIND} \times (WtT + TtW)$
- FuelEU rewards Wind Installed Power. In the future a possibility to integrate Wind Energy used for propulsion in the GHG intensity formula may be considered (methodology currently missing)

FuelEU ma	ritime				MMKN	MCZCS Workshop – 27FEB2024
Fitfor55	FuelEU - Intro Technology	At Berth Fuels/	/ EF Flexibility	Compliance	Implementation	Worked Example
Compliance	<u>e Technologies</u>					
	2025	2030 203	35 2040	2045	2050	0
			m Onshore Power Supply MJ) – 100% GHG WtW			
		Wind Assiste	ed Propulsion (reward) 5% reward factor			
	Fossil		Bio		Syntheti	ic
OIL	Fossil Diesel	Bio-Die >50%/65	esel 5% GHG WtW		e-Diesel >70% GHG WtW	
MeOH	Grey Methanol +8% GHG WtW	Bio-Me 65-80% (e thanol GHG WtW		e-Methanol >70% GHG WtW	
CH4	LNG 5-20% GHG WtW		ed biomethane GHG WtW		e-Methane >70% GHG WtW	
H2	Grey H2 +200% GHG WtW	Bio H 65-809	12 % GHG WtW		Green e-H2 >70% GHG WtW	
NH3	NH3 +200% GHG WtW				Green H2/NH3 >70% GHG WtW	

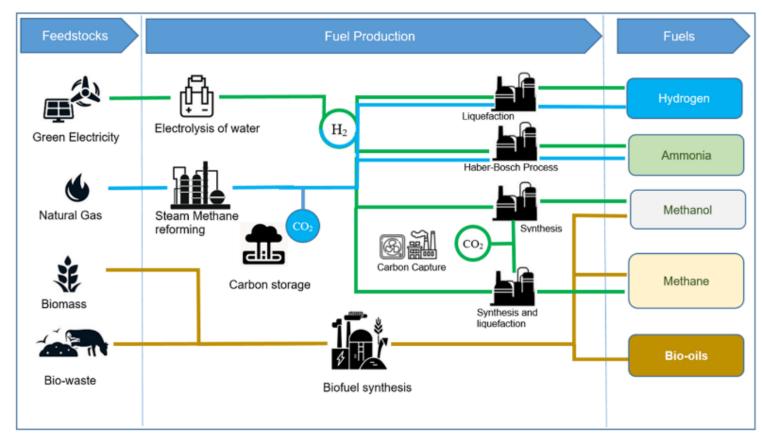
RFNBOs

Additional Zero Emissions at Berth

- Containerships and passenger ships (>5,000GT) required to connect to onshore power supply, securely moored at berth, <u>in all AFIR ports, as</u> <u>from 1 January 2030</u>.
- Also, in all non-AFIR ports, as from 1 January 2035, for all ports that develop OPS capacity.
- Ships at anchorage not covered, but voluntary opt-in provision for MS.
- **Exemptions** for:
 - 1. Short stays (<2hrs)
 - 2. Unscheduled port call due to safety
 - 3. Use of zero emission technologies
 - 4. Unavailable OPS connection in port
 - 5. Incompatible equipment in port
 - 6. In case of risk to the grid stability
 - 7. During emergency
 - 8. When requested by authorities for the purposes of maintenance/inspection.
- <u>Limit on exemptions (4), (5) and (6) from 1 January 2035</u>, 10% of the port call or to maximum 10 port calls during the reporting period, whichever is lower.

Fitfor55 FuelEU - Intro Technology At Berth Fuels/ EF Flexibility Compliance Implementation Worked Example

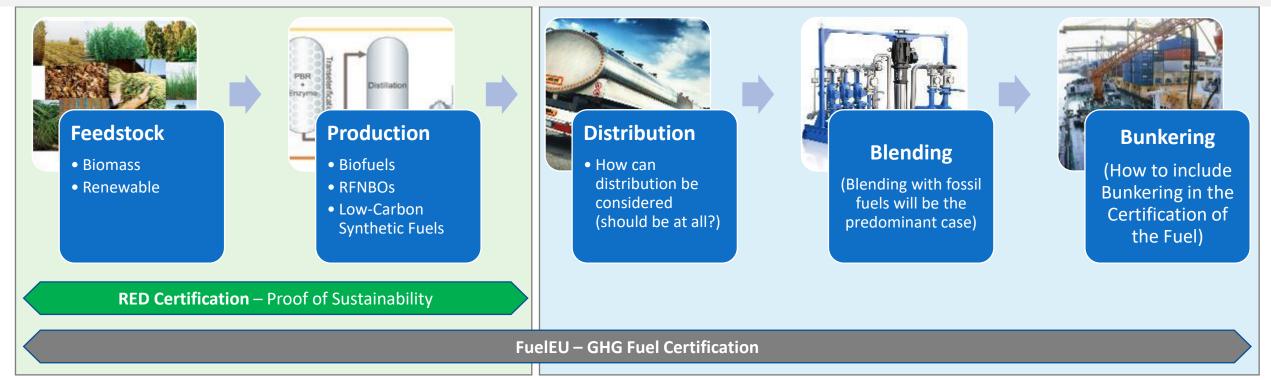
Eligibility of Renewable and Low-Carbon Fuels


(Biofuels):

- Sustainability and GHG saving criteria - RED Article 29
- No "food-and-feed" crop Biofuels

(RFNBOs and Recycled Carbon Fuels):

- GHG saving threshold RED Article 27(2)
- (Low-Carbon Synthetic Fuels):
 - Revised (recast) Gas Directive
 - Fuels not meeting criteria treated as fossil fuels


Several Pathways possible:

GHG Fuel Certification

- GHG Fuel Certification Essential for level playingfield
- Fuel Certificate to be submitted together with BDN
- Need to include GHG savings for each fuel product supply
- Blends need to provide relevant information to ALL parts blended
- Book & Claim not possible under FuelEU
- Fuel Certification for Bunkering outside EU OK! Fuel Certification Companies

MMKMCZCS Workshop – 27FEB2024

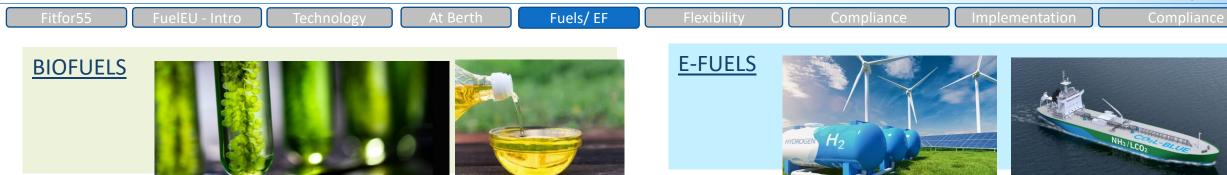
EU Guidelines on GHG Marine Fuel Certification

 European Sustainable Shipping Forum (ESSF) subgroup on Sustainable Alternative Power for Ships – <u>Workstream on GHG Fuel Certification</u>

At Berth

Fuels/ EF

- Leadership by Maersk Mc-Kinney Moller Center for Zero Carbon
 Shipping ISCC support
- <u>EU GHG Fuel Certification Guidelines</u> main output/Deliverable 1Q 2024
- Support to FuelEU and ETS (maritime) implementation
- <u>Support to Stakeholders</u> (Shipping companies, Fuel Suppliers, Verifiers, Certification Companies) in certification of Sustainable Marine Fuels and
- Demonstration of compliance with RED and FuelEU for all sustainable fuel fraction bunkered
- Contribute to solve dilemmas such as:
 - 1. Reproduction of Proof of Sustainability for different fuel fractions of the same batch.
 - 2. RED Certification outside the EU


EU Guidelines on GHG Marine Fuel Certification

Bridging the gap between RED and FuelEU implementation

MMKMCZCS Workshop – 27FEB2024

FuelEU maritime

- In FuelEU, needs at least between <u>50% and 65%</u> saving relative to RED Fuel Comparator ref 94 gCO2eq /MJ so only fuels with GHG intensity below 32.9 and 47 gCO_{2eq}/MJ can be considered.
- If the above is not met, it is considered to have the same WtT value as a fossil fuel.
- Safeguard against uptake of biofuels form "food-and-feed" crops.
- Credit given to biofuels (E Cf_CO2/LCV) to account for biomass growth. Well-to-Tank Emission Factor effectively reduced by the

- 70% saving threshold required for ReRFNBO in FuelEU below that = same as fossil fuel.
- No credit given in FuelEU Well-to-Tank (as in the case of Biofuels) – Credit for CCS included in RED Delegated Regulation
- RFNBOs multiplier to <u>double</u> their energy in (i.e. halving their GHG intensity), which can be applied <u>until 31 December 2033</u>
- <u>Low-Carbon Synthetic Fuels</u> Methodology for GHG intensity calculation under development (Gas Directive – waiting for December 2024)

RED DAs FAQ -<u>Commission Delegated Regulation (EU) 2023/1184</u> https://energy.<u>Commission Delegated Regulation (EU) 2023/1185</u> 07/2023_07_26_Document_Certification_questions.pdf

for55	FuelEU - Intro	Technology	At Berth	Fuels/ EF	Flexibility	Compliance	Implementation	Worked Example

Every Fuel at Every Port?

- **New FuelEU paradigm –** Demand for renewable and low carbon fuels will require Fuel Supply Contracts for supply of fuel products with specific GHG intensity.
- International Shipping will move from "**Spot Bunkering**" to "Fuel Supply **Contracts**" Not expected that all port will have available "on spot" each required fuel.

<u>Fuel Supply Contracts -</u> <u>Important to Consider</u>: 1. Price reference – Ideally use agreed global reference

- Duration Agree on a duration (longer duration better possibility to negotiate more favourable prices for 1st years
- 3. Fuel Specifications
- 4. Volumes required including conservative margin
- 5. GHG Fuel Certification requirements
- 6. Fuel Supply details/ Delivery Terms
- 7. Penalties for non-compliance with contractual terms.

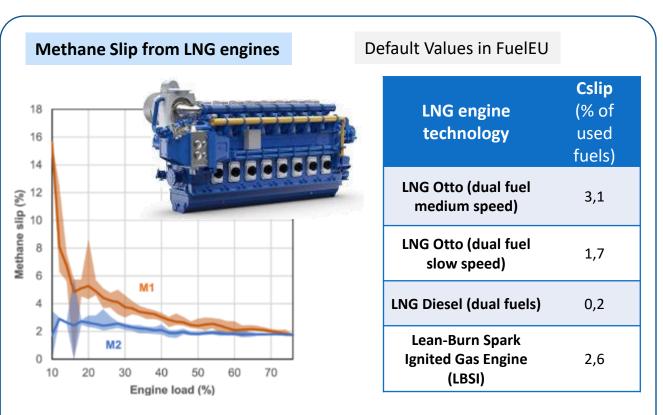
At Berth

Certification of Fuels:

- **Biofuels** RED Annex-V, Part C
- **RFNBOs/RCF** RED New Delegated Acts
- Low-Carbon Synthetic Fuels Gas Directive

Certification of Energy Converters:

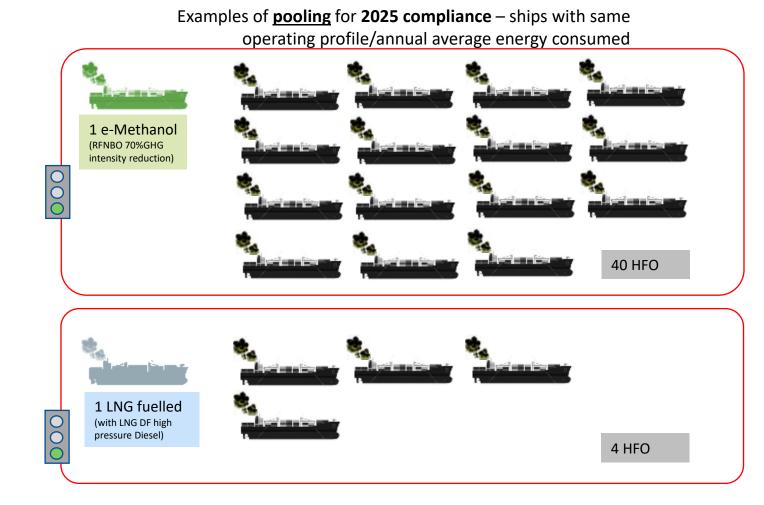
Possibility to certify "actual values" for Tank-to-Wake Emission Factors, except TtW CO2 emission factor for Fossil Fuels


Where can	WTT	TTW					
"actual emission		Combustion Emission Factors Slippage					
factors" be		CO2	CH4	N20			
calculated?							
Fossil	No(1)	No(3)	yes(5)	Yes(5)	Yes(5)		
Bio	Yes(2)	Yes(4)	Yes(5)	Yes(5)	Yes(5)		
Synthetic	Yes(2)	Yes(4)	Yes(5)	Yes(5)	Yes(5)		

(1) – WTT for fossil fuels – always DEFAULT.

(2) – WTT for bio/RFNBO RED/recast Gas Directive methodologies.

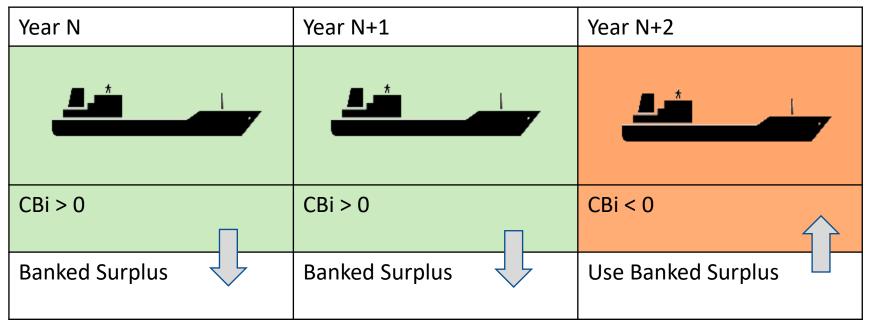
(3) -TTW CO2 emission factor fossil fuels - always DEFAULT.


(4), (5) – ACTUAL VALUE possible if demonstrated by International Standard

- FuelEU contains default values for Methane Slip Emissions (Cslip) from LNG internal combustion engines (ref: 4th IMO GHG Study)
- Possible to determine/demonstrate "Methane Slip" (Cslip) values if demonstrated based on existing international standards.
- ESSF SAPs (Expert Group) currently working on technical elements for Methane Slip certification

Flexibility Mechanisms - Pooling

- Voluntary and open pooling mechanism to reward/ incentivise overachievers and encourage the rapid deployment of the most advanced options
- **Together with the Multiplier** for RFNBOs, pooling represents an opportunity for fleets to go beyond compliance already for early years 2025 or 2030.


Simplified compliance balance calculations

FuelEU mari	FuelEU maritime MMKMCZCS Workshop – 27FEB2024									
Fitfor55	FuelEU - Intro	Technology	At Berth	Fuels/ EF	Flexibility	Compliance	Implementation	Worked Example		
Flexibility M	Flexibility Mechanisms - Banking									

• **Banking and borrowing**: surpluses and (small) deficits can be carried over to the next year

Banking

CB – Compliance Balance

FuelEU maritime			MM	KMCZCS Workshop – 27FEB2024
Fitfor55 FuelEU - Intro Technology At Berth Fuels/ EF	Flexibility	Compliance	Implementation	Worked Example

Flexibility Mechanisms - Borrowing

• **Banking and borrowing**: surpluses and (small) deficits can be carried over to the next year

Borrowing

Year N	Year N	Year N+1
CB < 0 (A)	CB + (A) ≥ 0	$CB - 1,1x(A) \ge GHGreq$
Deficit = (A) Ship non-compliant	advance compliance surplus	Aggravated

port

FuelEU maritime

Compliance

Governance:

- Monitoring and reporting is based on MRV approach
 MRV data input.
- <u>FuelEU-specific additional data (e.g. calculation of</u> compliance balance, recording of penalties, exchange and notifications between user groups)
- <u>Monitoring Template</u> \rightarrow <u>FuelEU Report</u> \rightarrow <u>Verification Report</u>

FuelEU Penalties:

- <u>Deterrent financial penalty in case of non-</u> <u>compliance with GHG intensity target</u>.
- Compliance Balance (Function of deficit/surplus x energy used)
- Separate penalty in case of <u>non-compliance with</u> requirements for additional Zero-Emissions at berth.
- Allocation of revenues from penalties to MS budgets.

FuelEU Database:

- Central IT system to support compliance and functioning of the Regulation.
- Associated to THETIS-MRV "FuelEU Module"
- Developed, hosted and managed by EMSA

MMKMCZCS Workshop – 27FEB2024

Report and review:

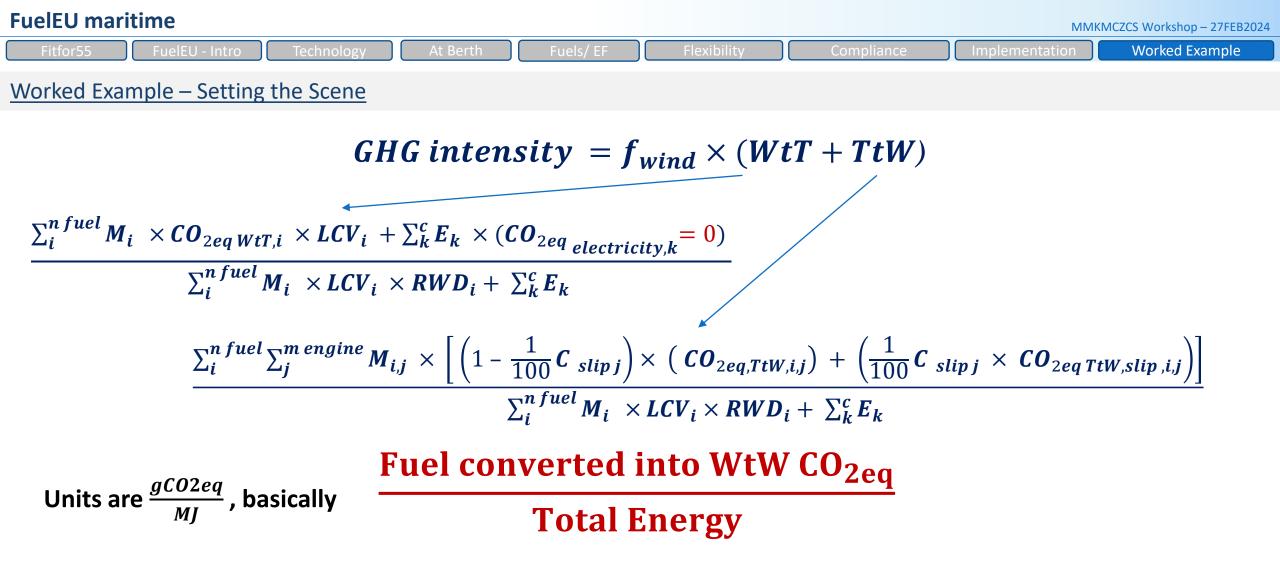
- Extensive report and review clause with the first reporting deadline on 31 December 2027 and every five years thereafter.
- Commitment to look in the future at:
 - Onboard Carbon Capture and Storage
 - Black Carbon
 - Geographic Scope and Ship Size
 - Alignment with IMO.

eleo mari	itime						MM	KMCZCS Workshop – 27FEB2024
Fitfor55	FuelEU - Intro	Technology	At Berth	Fuels/ EF	Flexibility	Compliance	Implementation	Worked Example

Compliance Timeline

	Jan	Feb	Mar	Apr	May	Jun	
Company	<mark>31JAN</mark> – FuelEU Report submitted to Verifier			30APR – limit for application of Flexibility Mechanisms			
Verifier			31MAR – Verification Report uploaded to FuelEU database			<mark>30JUN</mark> – FuelEU document of Compliance	
CA of Administering State							

Fitfor55 FuelEU - Intro Technology	At Berth Fuels/ EF Flexibility	Compliance Implementation Worked Example
 Secondary Legislation 14 Implementing and Delegated Acts Important building blocks for implementation of FuelEU Covering OPS, updates to Annex-II, RFNBOs, Zero Emission Technologies, Governance, FuelEU database, amongst others. 	<u>FuelEU Maritime</u> Dimensions of FuelEU Implementation	 RLCF Alliance Renewable and Low-Carbon Fuels Alliance Focus on uptake of availability and scalability of renewable and low carbon fuels. 200+ members, including operators, fuel suppliers, member states, etc. Maritime Roundtable focused on forecasting low-GHG marine fuel demand, in accordance with the FuelEU GHG intensity reduction curve.
 EMSA EMSA supporting with Governance aspects of the FuelEU FuelEU Data Base currently under development – will be the "heart" of the Implementation 	 Other Fitfor55 Implementation of other Fitfor55 waterborne instruments will be decisive for successful FuelEU implementation Interdependency mainly on AFIR (for shore-power availability) and in RED (for fuel certification) ETS implementation will also present important interdependencies, notably 	 ESSF European Sustainable Shipping Forum Sub-group on Sustainable Alternative Power fro Shipping working on FuelEU implementation Workstreams on Zero Emission Technologies, GHG Fuel Certification, Certification of Engines for lower methane emissions
	regarding the mitigation of risk of re- routing.	European Commission Mobility and Transport


Eitfor55	EuelELL_Intro	Technology	At Borth	Fuels / FF	Elevibility	Compliance	Implementation	Worked Example
110135		icennology	AUDERT		Пехібінсу	compliance	implementation	Worked Example

MMKMCZCS Workshop – 27FEB2024

Secondary Legislation	Deadline	Subject	2023	2024	2025
IA1: list of neighbouring container transhipment ports	End of 2025	Transhipment Ports		д	
DA1: Update/ Amendment of Annex II (default emission factors)	TBD	Annex-II update/ Default Emission Factors		into force	
ID2: criteria and method for RFNBOs assessment	TBD	RFNBOs subtarget		Entry i	
DA2 Revising RFNBO subtarget and informing about non applicability	TBD	RFNBO subtarget			
IA3: Specification of rules for the application of the RFNBO sub-target	31 DEC 2033	RFNBO subtarget			
DA3: Supplementing the existing table in Annex III with additional zero- emission technologies	TBD	Zero-Emission Technologies			
IA4: Criteria for the acceptance of zero-emission technologies for Annex III	End of 2024	Zero-Emission Technologies			
IA5: information to be provided on use of OPS supply	End of 2023	OPS			
IA6: Definition of standard monitoring plan	End of 2023	Governance			
IA7: international standards/ certifications to demonstrate for actual tank- to-wake emission factors	TBD	Governance			
IA8: Establishment of further rules for verification	End of 2023	Governance			
DA4: methods and criteria of accreditation of verifiers	End of 2023	Governance			
IA9: Rules for the FuelEU database	End of 2023	IT tool specifications			
DA5: defining factors for the calculation of penalties	End of 2024	Penalties			

Practical Examples

Compliance balance = (GHG target intensity – GHG actual intensity) x Total Energy

Worked Example

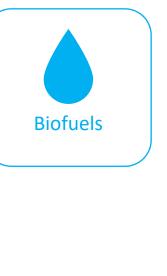
Worked Example – Setting the Scene

Reference value	91.16 g	CO _{2eq} /MJ
Target 2025	2.0%	89.3
Target 2030	6.0%	85.7
Target 2035	14.5%	77.9
Target 2040	31.0%	62.9
Target 2045	62.0%	34.6
Target 2050	80.0%	18.2
HFO		91.6
MGO		90.6
LNG Otto Medium speed		91 .0
Fossil methanol		~100.4
Fossil ammonia		~121.0
Fossil H ₂		~132.0

At Berth

- Reference value from 2020 is <u>91.16</u> gCO_{2eq}/MJ – this was based on the fuel mix reported in MRV in 2020
- VLSFO, MGO & LNG in 4 stroke Otto cycle engine will <u>not</u> lead to compliance in 2025 and beyond, unless blend-in/drop-in low-GHG compatible fuels are introduced
- Neither will fossil-based methanol, ammonia or H₂
- In an IMO context, you can still build LNG and methanol powered vessels, obtain a good attained EEDI, and also have some benefit in CII

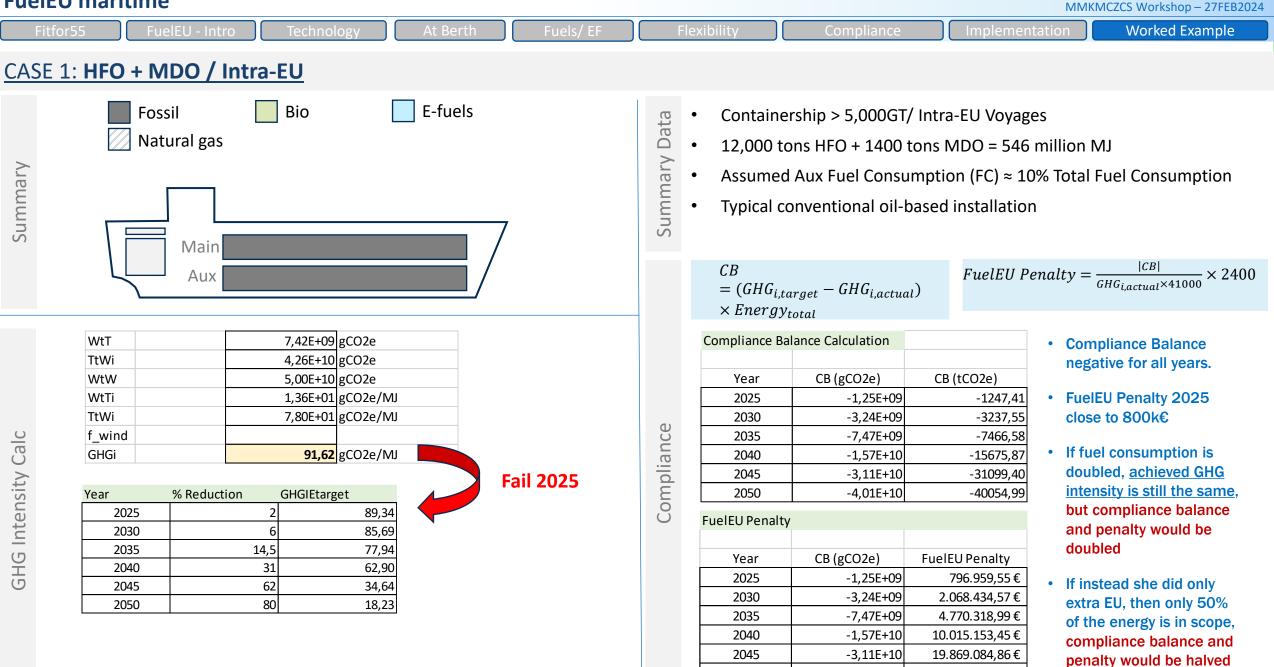
Worked Example

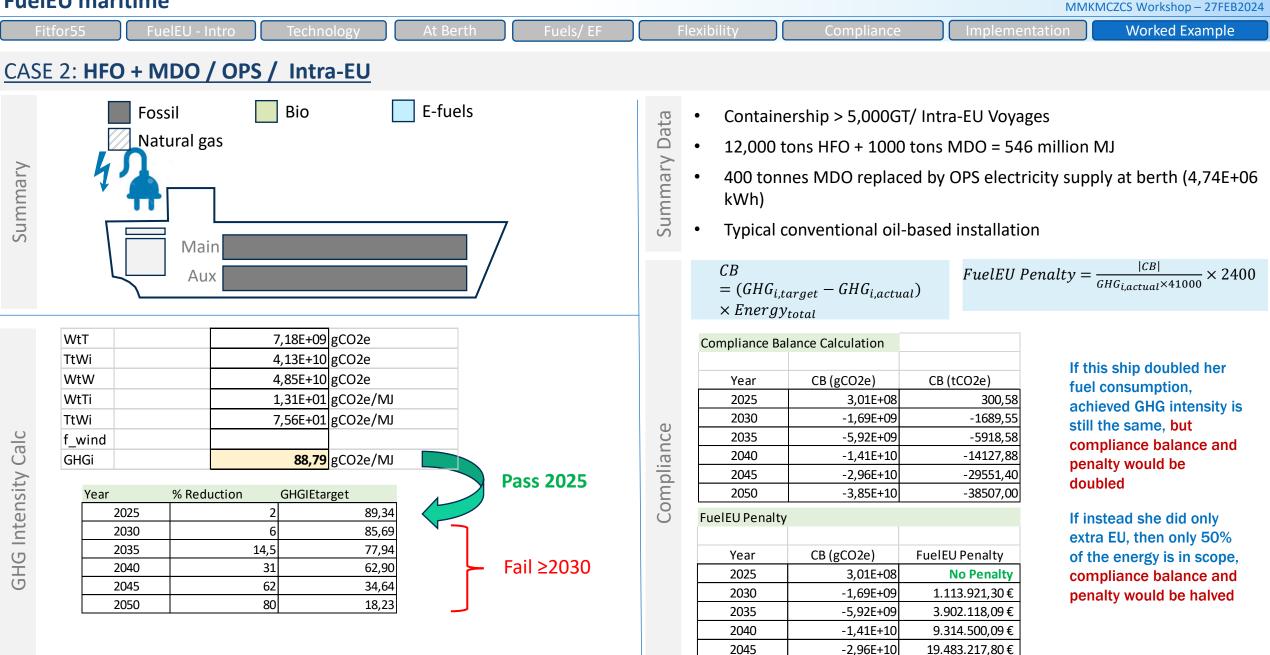

Worked Example – Setting the Scene

Reference value	91.16 g	gCO _{2eq} /MJ
Target 2025	2.0%	89.3
Target 2030	6.0%	85.7
Target 2035	14.5%	77.9
Target 2040	31.0%	62.9
Target 2045	62.0%	34.6
Target 2050	80.0%	18.2
LNG Otto Slow speed		83.8
LNG Diesel Slow speed		76.1
LPG & Ethane		*72~75

*Estimated

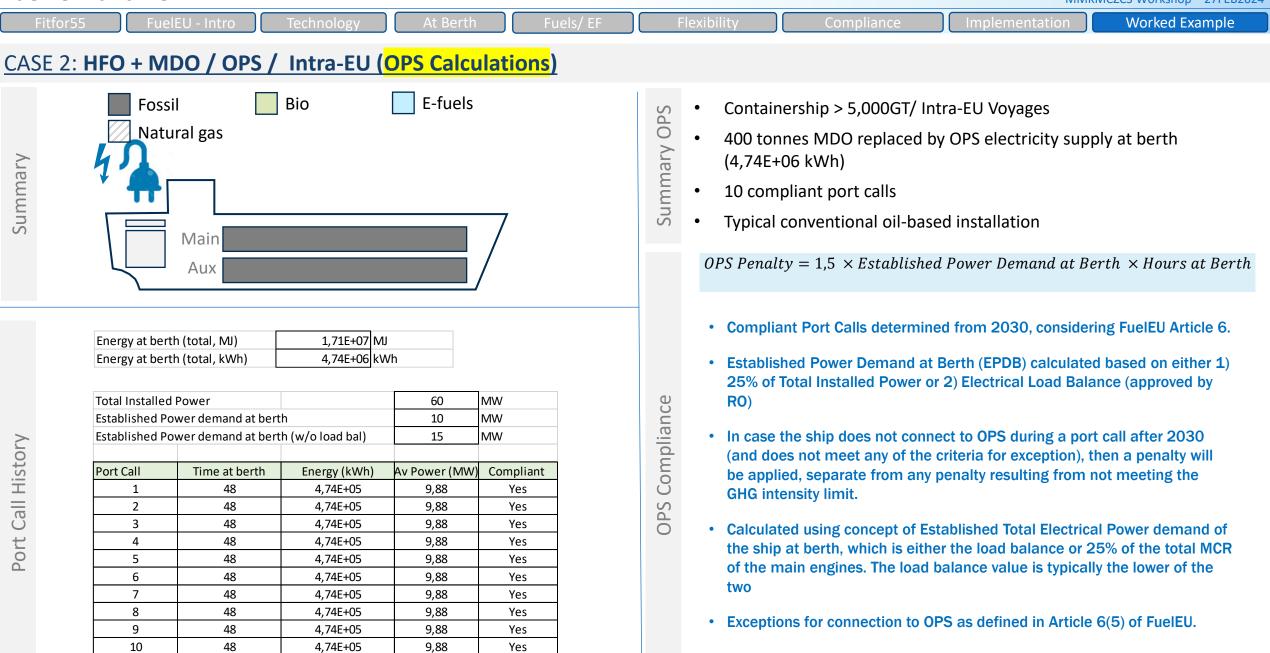
Amongst fossil fuels, LNG and LPG slow speed engines are compliant to 2034 or 2039.


The other main options for individual ships are:



2050

-4,01E+10


25.590.722,46€

2050

25.387.634,53€

-3,85E+10

2045

2050

9.670.334,44€

19.679.184,54€

25.490.774,92€

-3,03E+10

-3,93E+10

10

49

FuelE	U maritim	ne										MMKN	ACZCS Workshop – 27FEB2024
Fitf	or55 F	uelEU - Intro	Technology	At Berth	۱ F	uels/ EF	F	lexibility		Complianc	ce Imple	ementation	Worked Example
CASE	3: HFO + I	MDO / OPS	/ Intra-EU (including	non-co	mpliant P	ort (Calls) (<mark>O</mark>	PS Ca	alculatio	<mark>ns</mark>)		
Summary		ossil [atural gas Main Aux	Bio	E-fuels	7		Summary Data	 12,0 200 (2,37) Typic 	000 tons tonnes 7E+06 k cal conv 5 Penalt	s HFO + 100 MDO repla (Wh) + 200 ventional o	GT/ Intra-EU V 00 tons MDO = aced by OPS el tonnes of MD il-based instal	546 million N ectricity supp 0 @ berth. lation	
	Energy at bert Energy at bert		8,54E+06 2,37E+06		<u></u>			Port Call		Compliant Yes No	Penalty (1) 720.000,00 €	Penalty (2) 1.080.000,00 €	Penalty (1) ETPDB with Load Balance
	Total Installed I	Power		60	MW			3		Yes			
	Established Pov	wer demand at bert	h	10	MW			4		No	720.000,00€	1.080.000,00€	Penalty (2)
<u> </u>	Established Pov	wer demand at bert	h (w/o load bal)	15	MW		Compliance	5		Yes			ETPDB without
g							an	6		No	720.000,00€	1.080.000,00€	Load Balance
\geq	Port Call	Time at berth	Energy (kWh)	Av Power (MW)	-		pli	7		Yes			- 25% of total
Sit	1	48	4,74E+05	9,88	Yes		B	8		No	720.000,00€	1.080.000,00€	installed
CD CD	2	48			No	_	0	9		Yes			power
nt(3	48	4,74E+05	9,88	Yes	_	U	10)	No	720.000,00€	1.080.000,00€	
	4	48			No	4							
GHG Intensity Calc	5	48	4,74E+05	9,88	Yes	4			Т	OTAL	3.600.000,00€	5.400.000,00€]
J	6	48		0.55	No	4		_	0000 6				
	7	48	4,74E+05	9,88	Yes	-					er the scope of		
	8	48	4 745 .05	0.00	No	-		penal	ities can	be very sigr	nification (deper	nding on factors	s above).
	9	48	4,74E+05	9,88	Yes	4						4	

No

FuelEU penalty 2030 + OPS penalty (1) = 1,598 + 3,600 = 5,2 million €

Summary Data

Compliance

FuelEU Penalty

Year

2025

2030

2035

2040

2045

2050

CASE 4: HFO + MDO / OPS / Wind/ Intra-EU

WtT			7,	18E+09	gCO2e	
TtWi			4,	13E+10	gCO2e	
WtW			4,	85E+10	gCO2e	
WtTi			1,	31E+01	gCO2e/	'MJ
TtWi			7,	56E+01	gCO2e/	'MJ
f_wind				0,97		
GHGi				86,12	gCO2e/	'MJ
					-	
Year		Target	Reduction	GHGIEt	arget	
20)25		2			89,34
20	030		6			85,69

14,5

31

62

80

2035

2040

2045

2050

Pass 2025

Wind assisted propulsion is treated differently from fuels and OPS and uses a <u>reward</u> multiplier f_{wind} which ranges from 0.99 to 0.95

 f_{wind} is calculated as P_{wind}/P_{prop} where P_{wind} is the effective power as calculated via MEPC.1/Circ.896 and P_{prop} is P_{ME} used in the EEDI calculation – assume our ship fits a kite $P_{wind}/P_{prop} = 0.12$, $f_{wind} = 0.97$

FuelEU Penalty

no penalty

160.286,98€

3.034.716,66€

8.614.491,92€

19.097.706,05€

25.184.733,61€

СВ $= (GHG_{i,target} - GHG_{i,getual})$ $\times Energy_{total}$

FuelEU Penalty = $\frac{|CB|}{GHG_{iactual} \times 41000} \times 2400$

Compliance Ba	lance Calculation	
Year	CB (gCO2e)	CB (tCO2e)
2025	1,75E+09	1754,31
2030	-2,36E+08	-235,82
2035	-4,46E+09	-4464,85
2040	-1,27E+10	-12674,15
2045	-2,81E+10	-28097,67
2050	-3,71E+10	-37053,27

CB (gCO2e)

1,75E+09

-2,36E+08

-4,46E+09

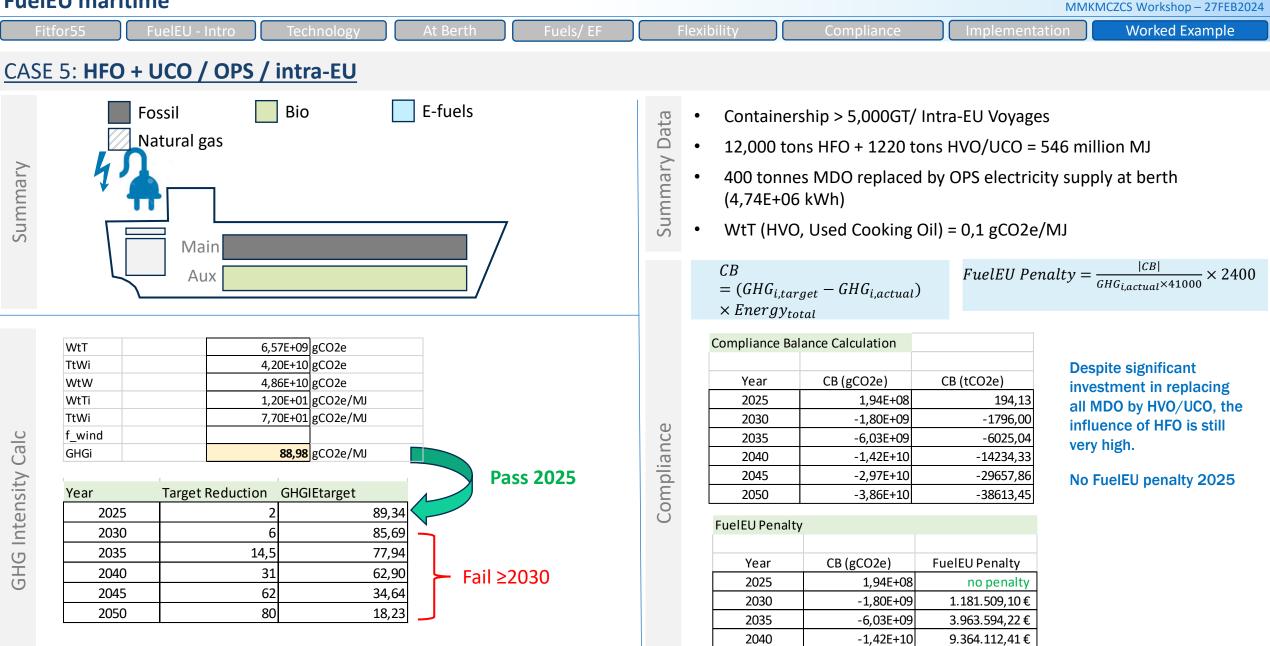
-1,27E+10

-2,81E+10

-3,71E+10

Wind Assisted **Propulsion is** rewarded through a factor designed to incentivize installation.

Positive CB of 1754,31 tonnes of CO2.


The combined effect of OPS and WAP allows compliance with no modification of the conventional fuel installations.

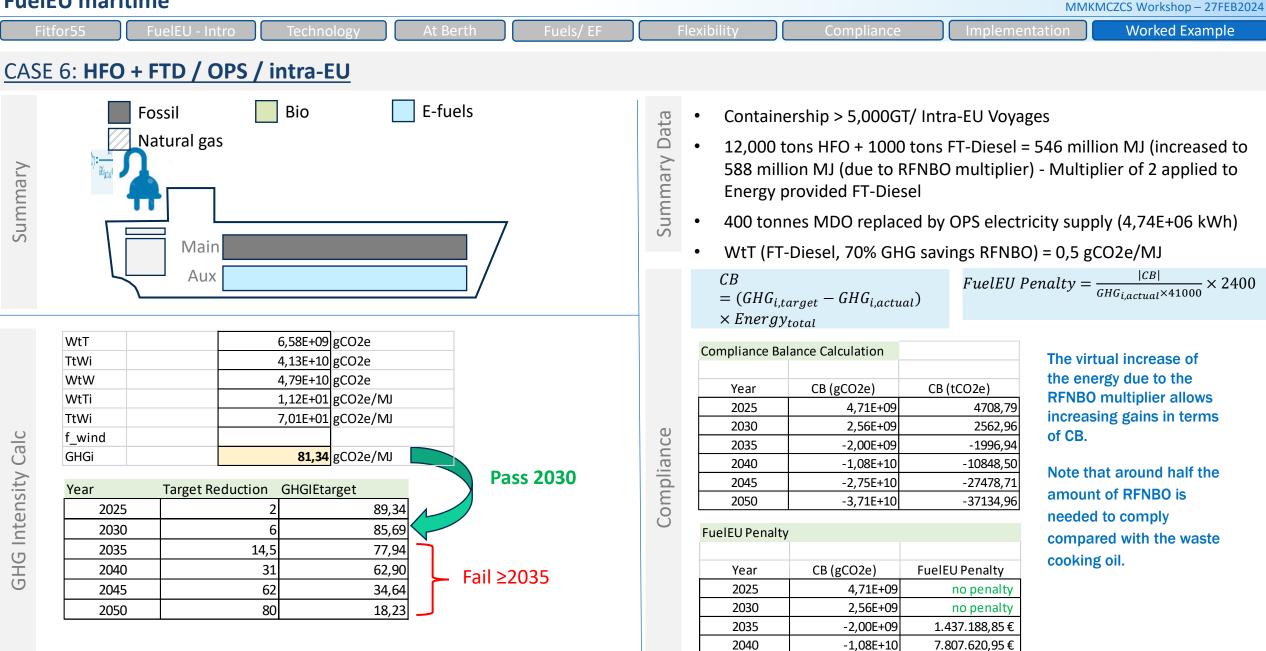
77,94

62,90

34,64

18,23

-2,97E+10


-3,86E+10

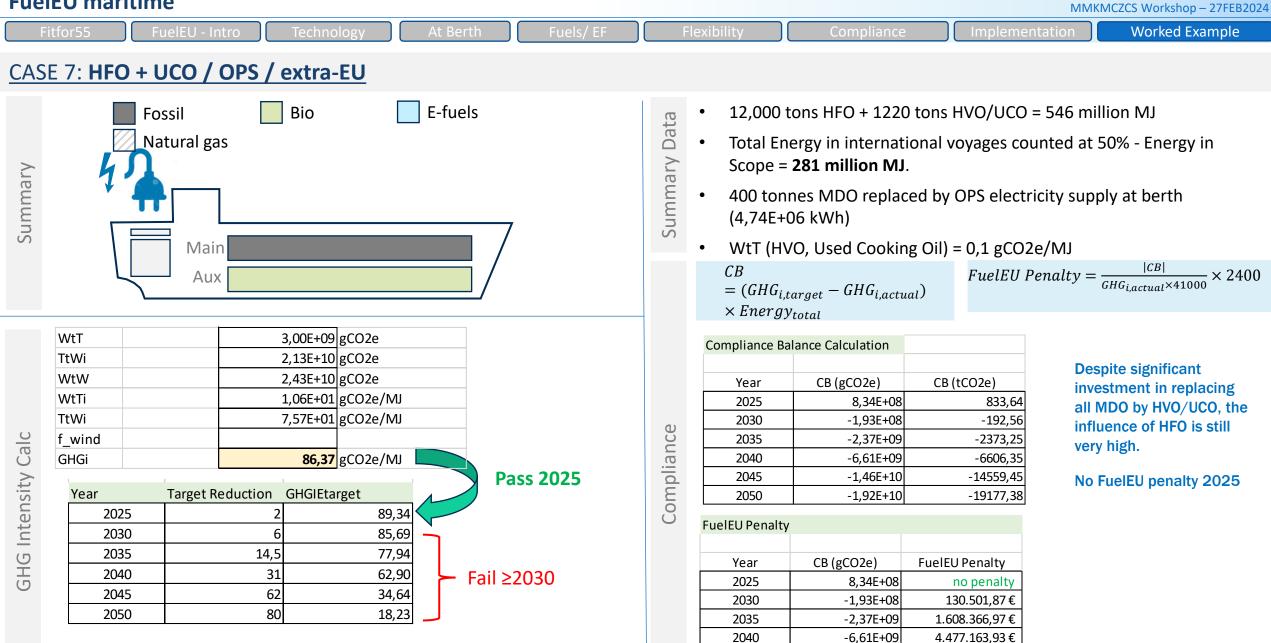
2045

2050

19.510.540,52€

25.402.014,91€

2045


2050

-2,75E+10

-3,71E+10

19.776.311,57€

26.725.873,87€

2045


2050

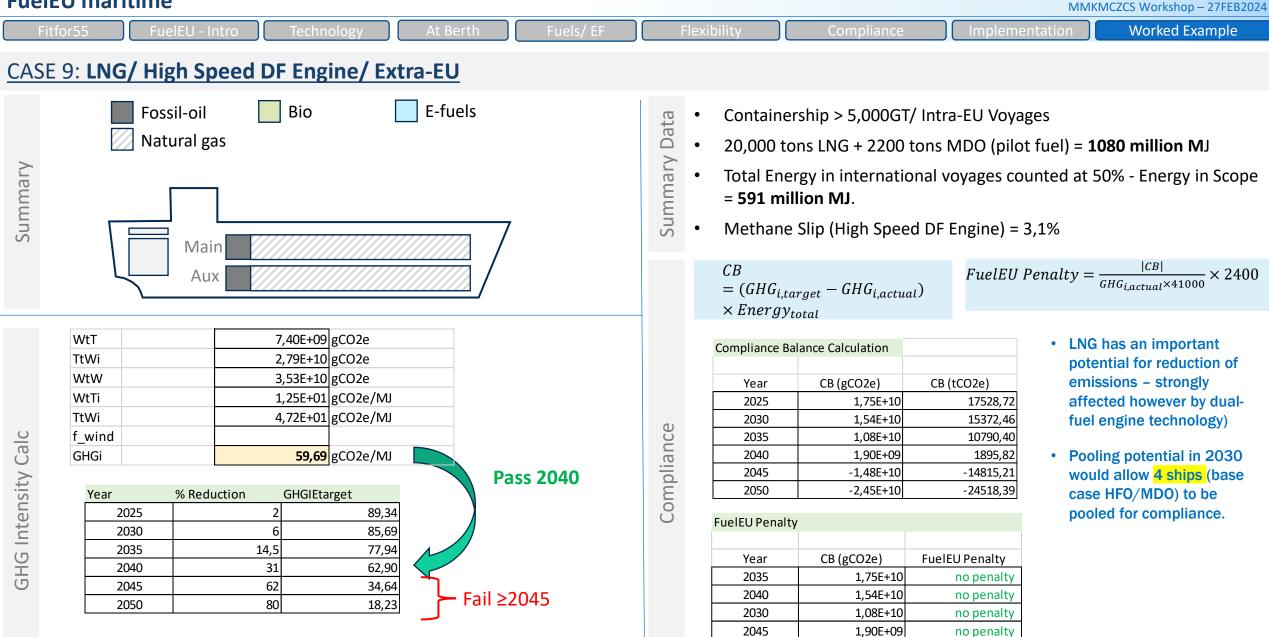
-1,46E+10

-1,92E+10

9.867.024,89€

12.996.621,57€

2045


2050

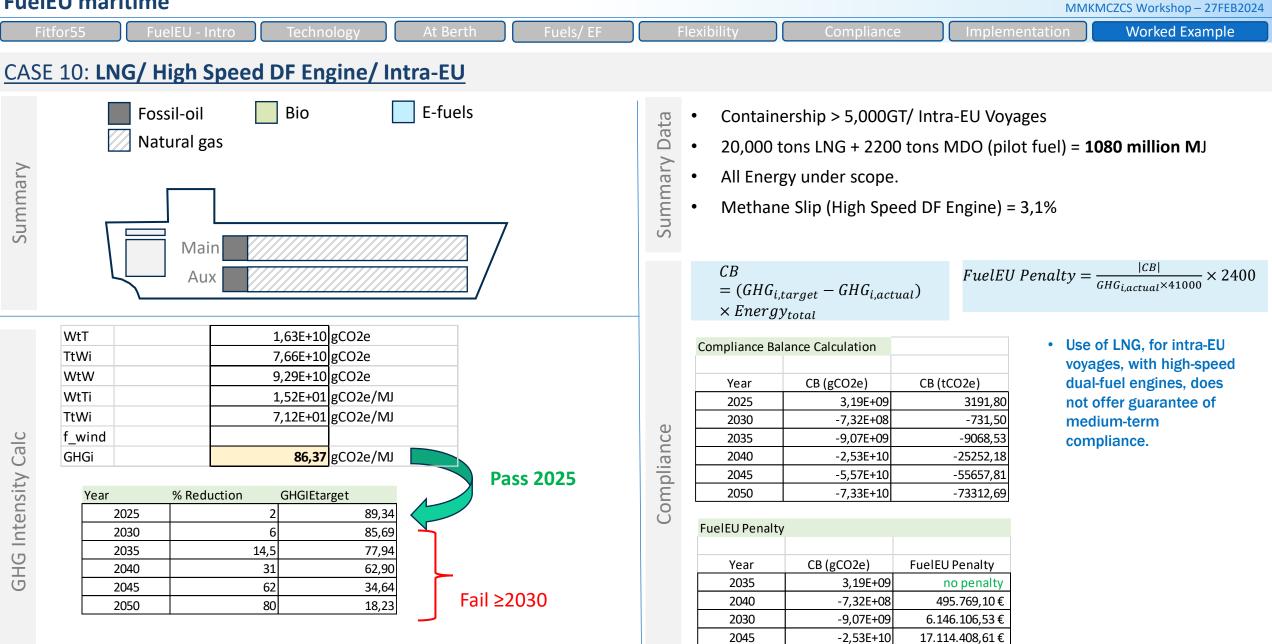
-2,30E+09

-1,95E+10

3.650.972,52€

30.999.767,31€

2050


2025

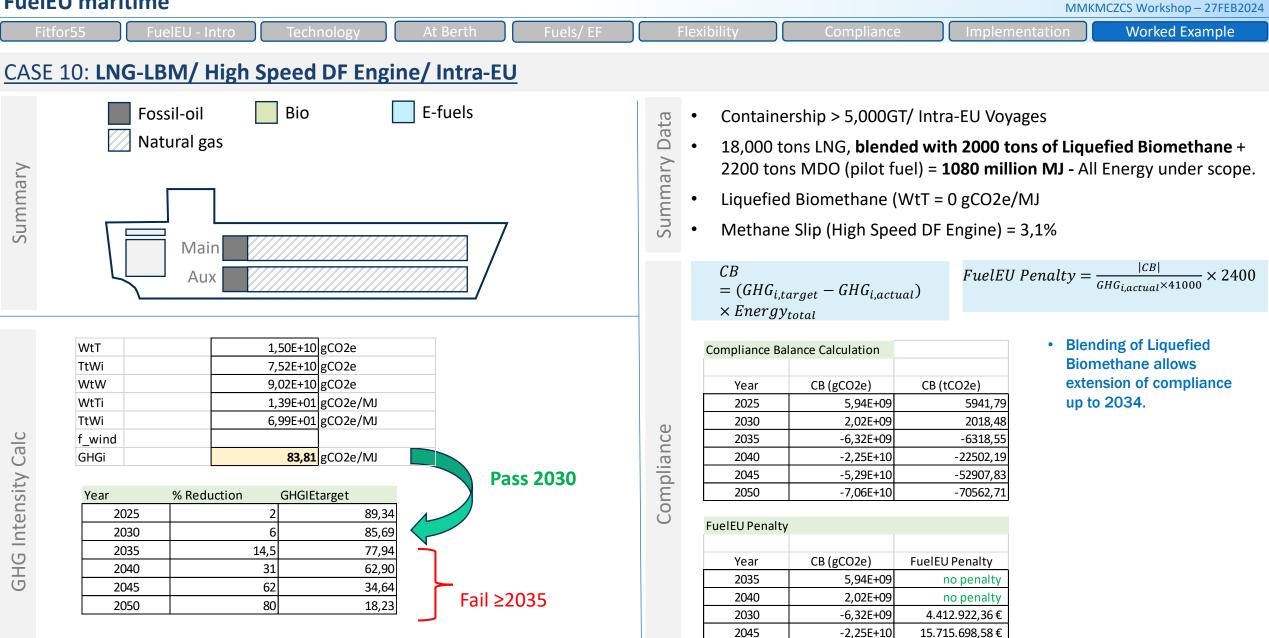
-1,48E+10

-2,45E+10

14.527.854,71€

24.042.829,82€

2050


2025

-5,57E+10

-7,33E+10

37.721.521,60€

49.686.942,05€

2050

2025

-5,29E+10

-7,06E+10

36.951.217,53€

49.281.518,85€

Fueleo mari							MM	KMCZCS Workshop – 27FEB2024
Fitfor55	FuelEU - Intro	Technology	At Berth	Fuels/ EF	Flexibility	Compliance	Implementation	Worked Example

Case-Study Summary

ase-Study Summar	<u>Y</u>										
	1 HFO/MDO/ intra-EU	2 HFO/MDO/ OPS/intra- EU	3 HFO/MDO/ OPSnc/ intra-EU	4 HFO/MDO /OPS/Wind /intra-EU	5 HFO+UCO /OPS/ intra-EU	6 HFO/FTD/ OPS/ intra- EU	7 HFO+UCO/ OPS/extra- EU	8 E-MeOH/ intra-EU	9 LNG/ Low- Speed DF/ extra-EU	10 LNG/ High- Speed DF/ Intra-EU	11 LNG-LBM/ High-Speed DF/ Intra-eU
Intra/Extra	Intra	Intra	Intra	Intra	Intra	Intra	Extra	Intra	Extra	Intra	Intra
Main (tonnes)	12,000 HFO	12,000 HFO	12,000 HFO	12,000 HFO	12,000 HFO	12,000 HFO	12,000 HFO	-	20,000 LNG	20,000 LNG	18,000 LNG
Aux (tonnes)	1,400 MDO	1,000 MDO	1,000 MDO	1,000 MDO	-	-	-	1,000 MDO	2,200 MDO	2,200 MDO	2,200 MDO
Energy (million MJ)	546	546	546	564	546	546 (588)	546 (281)	546	1080	1080	1080
OPS (million kWh)	-	4,74	2,37	4,74	4,74	4,74	4,74	-	-	-	-
Biofuel/RFNBO	-	-	-	-	1,220 HVO/UCO	1,000 FTD	1,220 HVO/UCO	25,276 e-MeOH	-	-	2000
F _{wind}	-	-	0.97	-	-	-	-	-	-	-	-
CO _{2eq} WtW (tonnes)	5x10 ⁴	4,85x10 ⁴	4,92x10 ⁴	4,85x10 ⁴	4,86x10 ⁴	4,79x10 ⁴	2,43x10 ⁴	4,06x10 ⁴	3,53x10 ⁴	9,29x10 ⁴	4,06x10 ⁴
GHG Intensity 2025 (tCO2	91,62	88,79	90,20	86,12	88,98	81,34	86,37	38,75	59,69	86,37	83,81
Compliance balance (tonnes)	-1247	300,58	-473,42	1754,3	194,13	4708,8	833,64	55062,5	17528,7	3191,8	5941,79
Penalty (k€)	796	-	307,2 (720 – OPS)	-	-	-	-	-	-	-	-

Questions to: Fitfor55@emsa.europa.eu

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Ask questions at slide of the second second

Center Presentations

Ratna Nataliani

Sustainability Manager – Decarbonisation

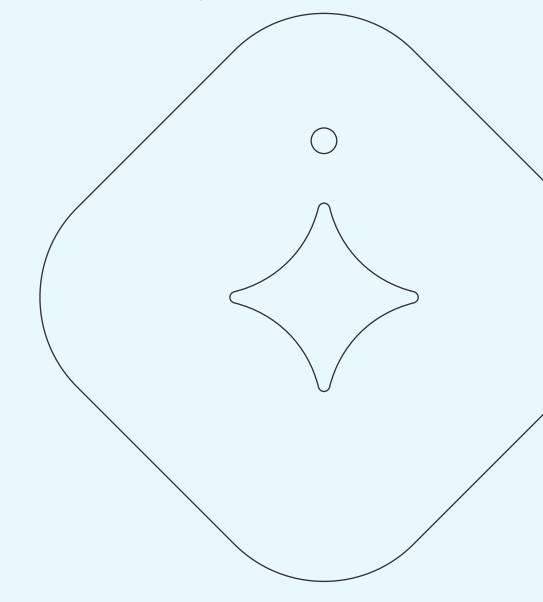
Hapag Lloyd

Secondee to Regulatory Affairs

Maersk Mc-Kinney Moller Center for Zero Carbon Shipping

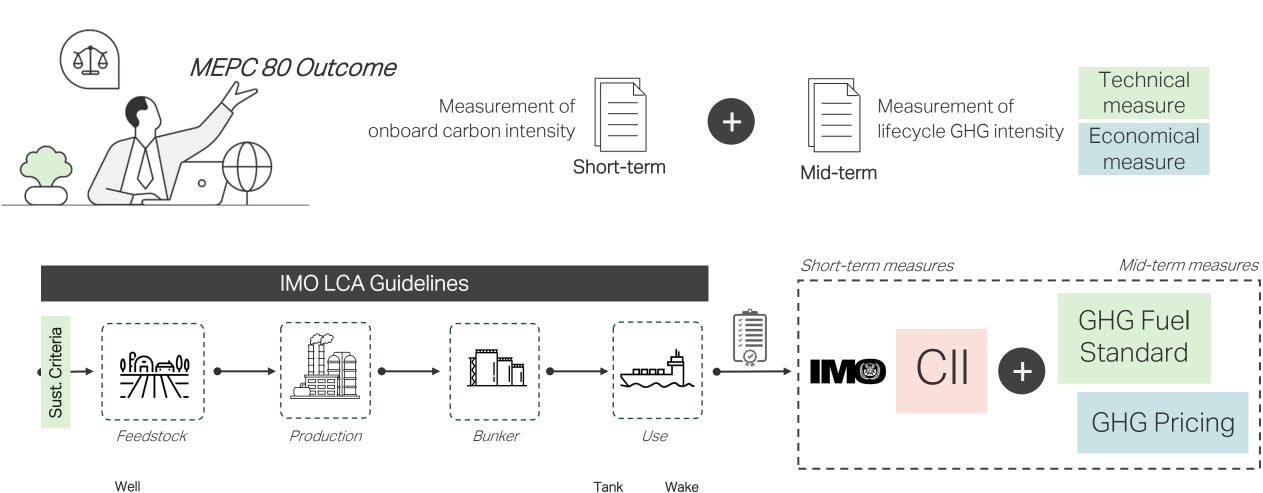
Joe Bettles

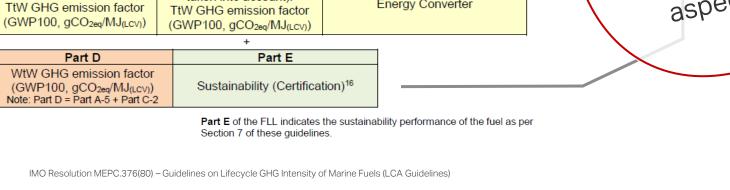
Market Analyst – Business & Economics


Maersk Mc-Kinney Moller Center for Zero Carbon Shipping Pernille Palmelund Sørensen

Regulatory Affairs Manager

Maersk Mc-Kinney Moller Center for Zero Carbon Shipping


Certification of Fuels Ratna Nataliani



Why is Certification becoming more and more important?

•

Fuel Lifecycle Label demands "Sustainability (Certification)"

The FLL is a technical tool to collect and convey the information relevant for the lifecycle assessment of marine fuels and energy carriers (e.g., electricity for shore power) used for ship propulsion & power generation onboard in the context of IMO LCA Guidelines.

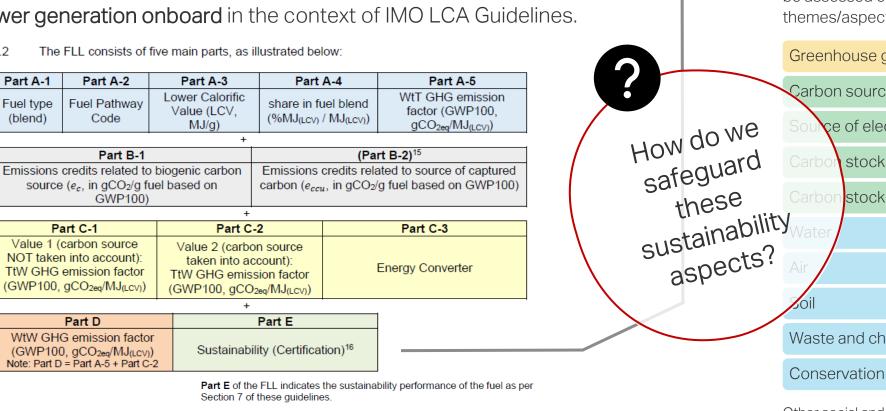
8.2 The FLL consists of five main parts, as illustrated below:

Part A-2

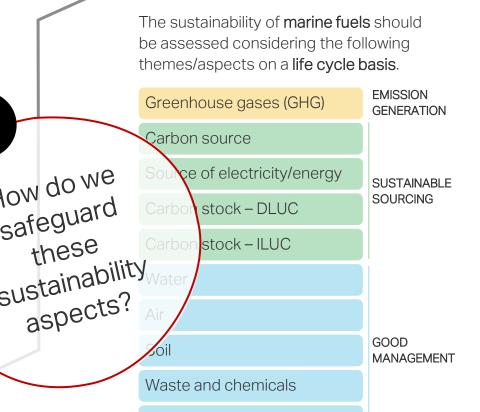
Fuel Pathway

Code

Part C-1


Value 1 (carbon source

NOT taken into account):


Part A-1

Fuel type

(blend)

Questions? Submit at slido.com using code #FuelEU

7. SUSTAINABILITY

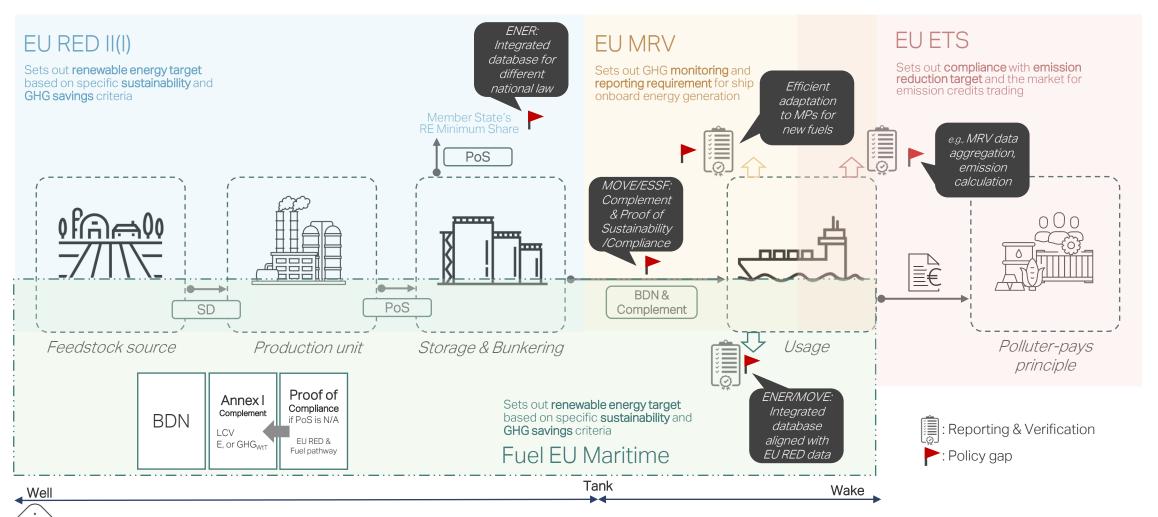
Other social and economic sustainability themes/ aspects may be considered at a later stage.

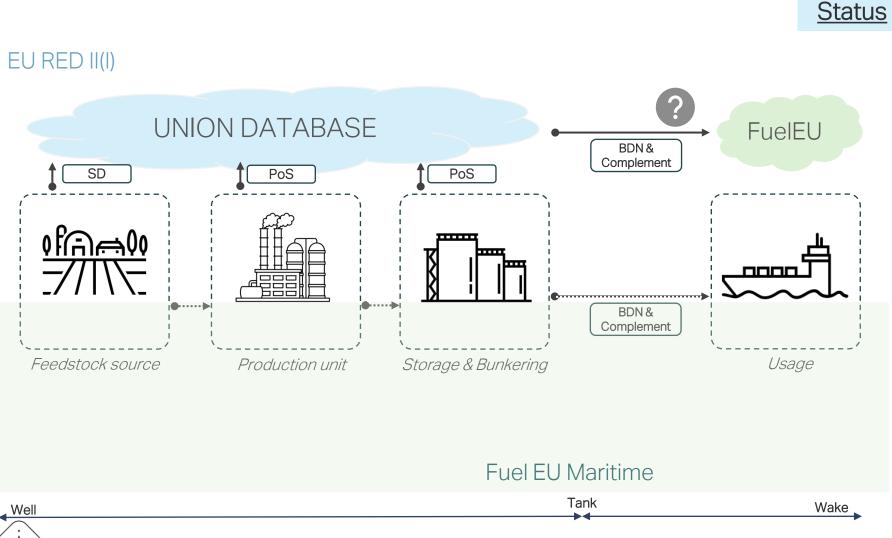
? Questions? Submit at slido.com using code #FuelEU

European Sustainable Shipping Forum (ESSF) Led by MOVE – DG Mobility and Transport

Platform for a <u>structural dialogue</u>, <u>exchange of technical knowledge</u>, <u>cooperation</u>, <u>and coordination</u> amongst relevant maritime industries' stakeholders and the Commission and its services to better address the environmental <u>sustainability challenges</u> confronting the <u>EU maritime transport</u> sector.

Work Stream #2 Certification is part of the Subgroup <u>Sustainable Alternative Power for Shipping</u>-Mid- to Long-Term Solutions for Maritime GHG Emissions Reductions.

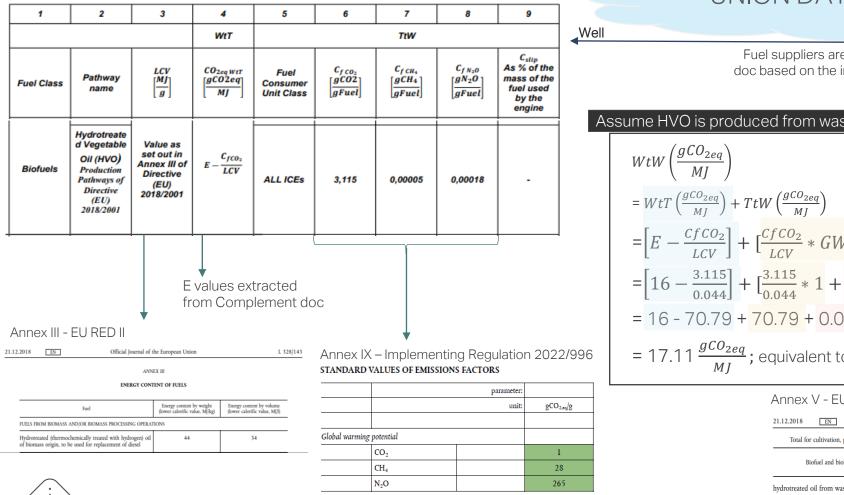

- ✓ Analyze certification gaps for Fuel EU Maritime and the maritime inclusion into the EU ETS implementations
- ✓ Review relevant processes and exchange views among economic operators along the marine fuel supply chain
- Develop guidance document to be proposed to the Commission with the objective of smooth adoption by economic operators and especially compliance subject (shipping companies) to achieve compliance efficiently

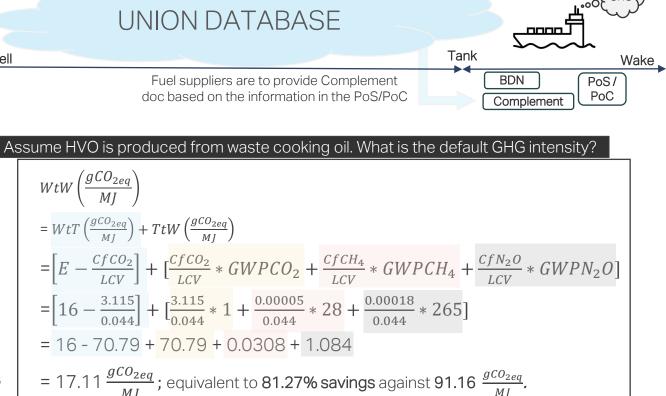

Questions? Submit at slido.com using code #FuelEU

How do European laws [Fitfor55] affect shipping? *Context: EU territory/port*

UDB: Key solution to traceability (and efficient compliance)?

EOs have uploaded transactional documents

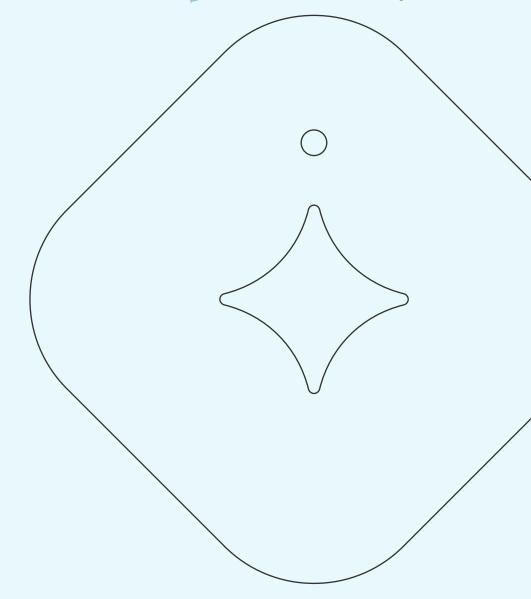

Gaseous fuels: Currently in discussion with national gas registries in the EU


What can we expect from **Union Database** (UDB)?

- . Sustainable feedstock and fuel traceability
- 2. Anti-fraud measure
- 3. Synergy with MS' law
- 4. Compliance evidence supporting e.g., FuelEU and EU ETS

Example: GHG intensity calculation for sustainable HVO (UCO-based)

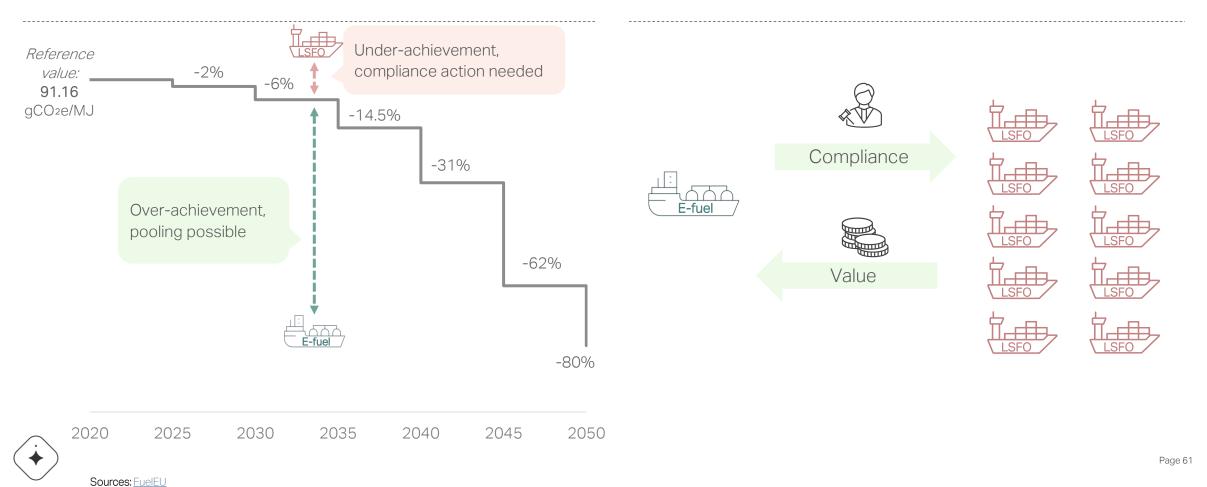
Main reference: Annex II to Fuel EU


Annex V - EU RED II \rightarrow for HVO, waste cooking oil
--

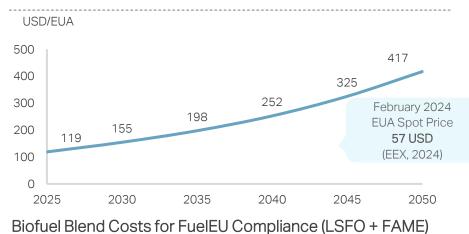
21.12.2018 EN Official Journal of	the European Union	L 328/1
Total for cultivation, processing, transport and distribution		
Biofuel and bioliquid production pathway	Greenhouse gas emissions – typical value (g CO2eq/MJ)	Greenhouse gas emissions – default value (g CO2eq/MJ)
nydrotreated oil from waste cooking oil	11,9	16,0

For reference only. All figures shall be provided by fuel suppliers.

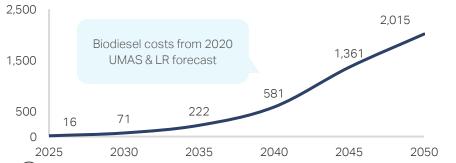
FuelEU Pooling Joe Bettles



FuelEU Pooling | Companies that overachieve on their targets can use pooling to share overachievement

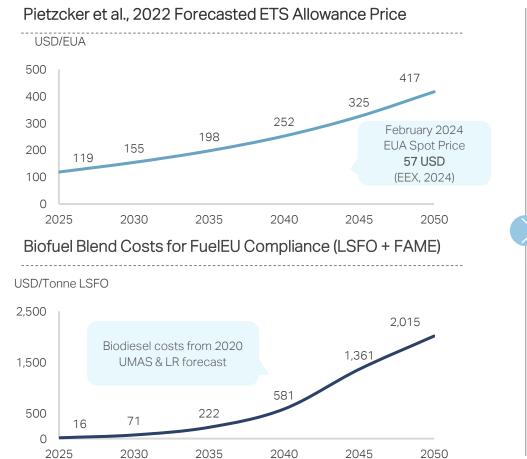

Pooling is possible when overachieving on targets

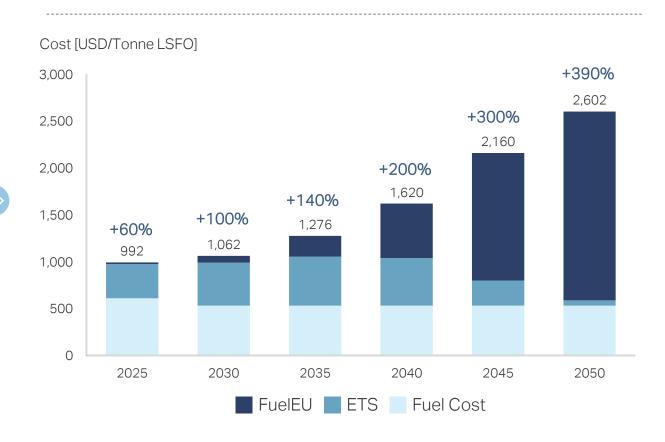
Pooling exchange



FuelEU Pooling | Estimated combined impact of EU ETS and FuelEU are expected to significantly drive-up the cost of conventional fuel

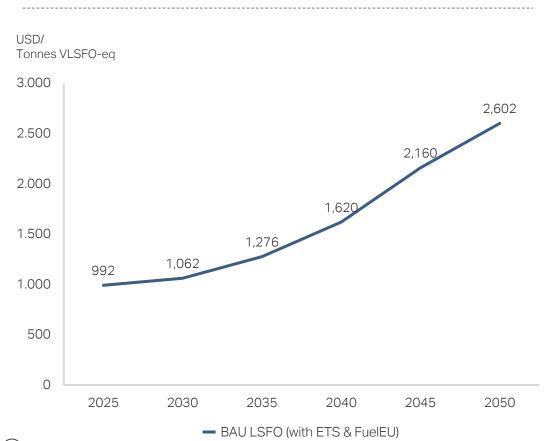
Pietzcker et al., 2022 Forecasted ETS Allowance Price


USD/Tonne LSFO



ETS forecast based on 'ambitious scenario' in which EU policymakers withdraw allowances to meet a 55% GHG reduction by 2030 and net-zero by 2050 (<u>Pitetzcker et al., 2021</u>) Biodiesel forecasts is the average of low and high projections from a 2020 Lloyd's Register and UMAS Report (<u>LR & UMAS, 2020</u>) **Note**: Figure shows estimates for LSFO vessels sailing exclusively in the EU

FuelEU Pooling | Estimated combined impact of EU ETS and FuelEU are expected to significantly drive-up the cost of conventional fuel

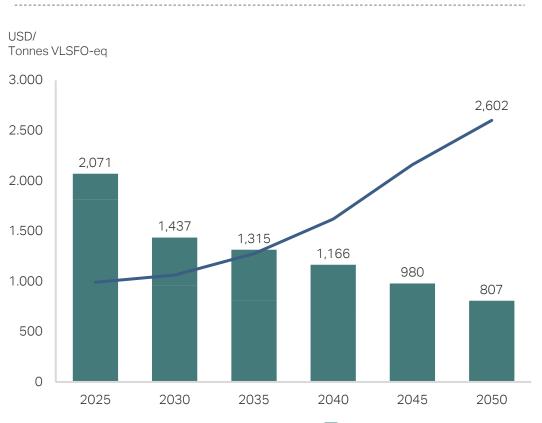


Impact of FuelEU and EU ETS on LSFO Fuel Cost

 (\mathbf{i})

ETS forecast based on 'ambitious scenario' in which EU policymakers withdraw allowances to meet a 55% GHG reduction by 2030 and net-zero by 2050 (<u>Pitetzcker et al., 2021</u>) Biodiesel forecasts is the average of low and high projections from a 2020 Lloyd's Register and UMAS Report (<u>LR & UMAS, 2020</u>) **Note**: Figure shows estimates for LSFO vessels sailing exclusively in the EU FuelEU Pooling | Vessels sailing on e-ammonia or e-methanol can achieve cost parity with rising LSFO costs by 2035 or earlier with pooling

Cost of Business as Usual LSFO with EU ETS and FuelEU



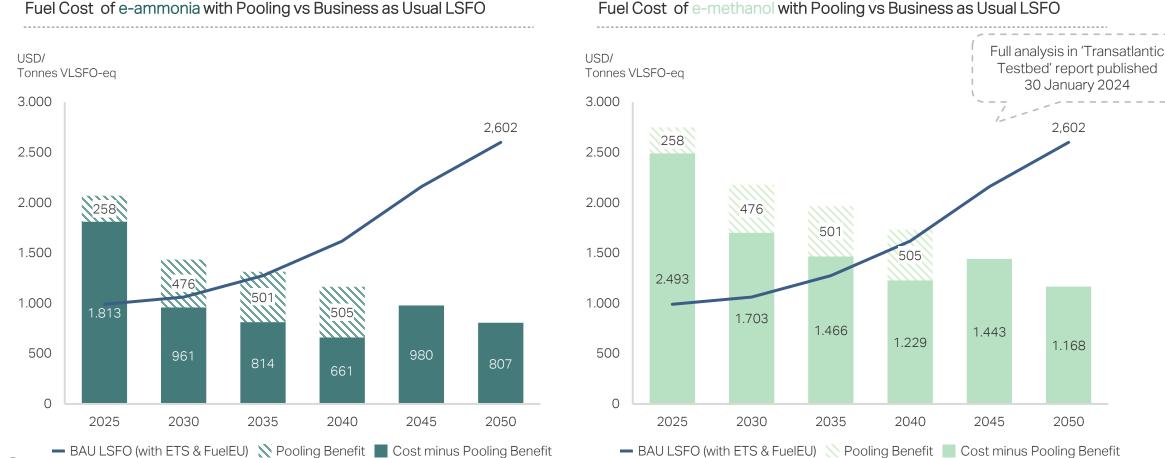
Note: VLSFO-equivalent units are a standardized measure used to compare the energy content of Very Low Sulfur Fuel Oil (VLSFO) with alternative maritime fuels like ammonia and methanol, enabling a direct comparison of cost. This is needed because these fuels have varying energy densities per tonne.

FuelEU Pooling | Vessels sailing on e-ammonia or e-methanol can achieve cost parity with rising LSFO costs by 2035 or earlier with pooling

Fuel Cost of e-ammonia vs Business as Usual LSFO

🗕 BAU LSFO (with ETS & FuelEU) 📃 e-ammonia Fuel Cost

Note: Cost projections are from MMMCZCS's in-house transition modeling tool NavigaTE, which is based on knowledge and insights from in-house experts and partner organizations. Cost projections can be found by acquiring access to the MMMCZCS' open source TCO model.

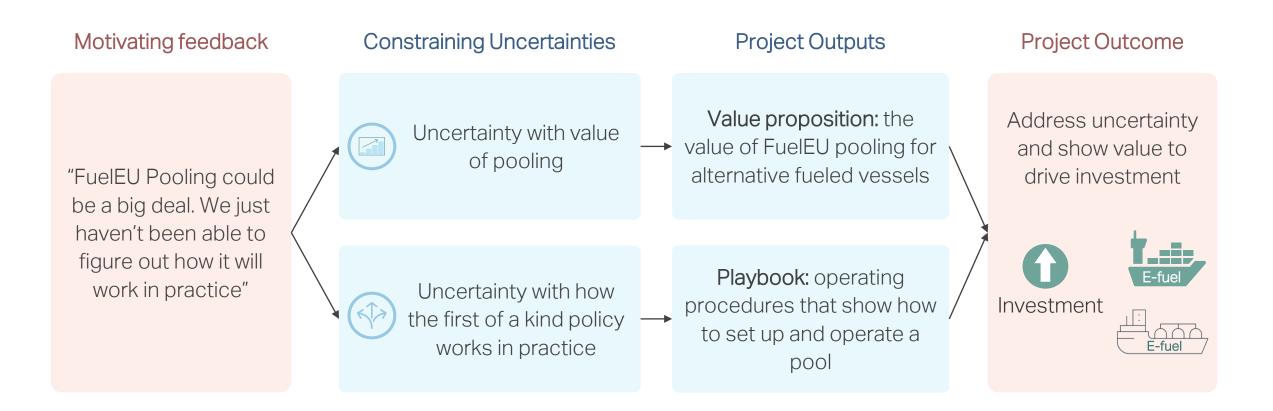

FuelEU Pooling | Vessels sailing on e-ammonia or e-methanol can achieve cost parity with rising LSFO costs by 2035 or earlier with pooling

Fuel Cost of e-ammonia with Pooling vs Business as Usual LSFO USD/ Tonnes VLSFO-eq 3.000 2,602 2.500 2.000 1.500 1.000 1.813 500 961 814 807 661 0 2025 2030 2035 2040 2045 2050

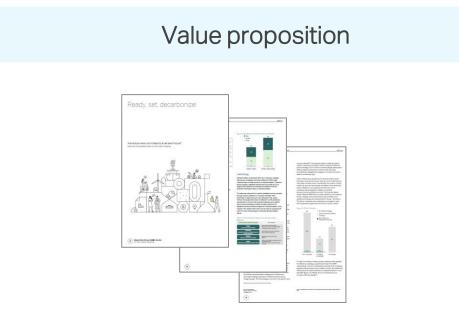
- BAU LSFO (with ETS & FuelEU) 🚿 Pooling Benefit 📕 Cost minus Pooling Benefit

Note: Cost projections are from MMMCZCS's in-house transition modeling tool NavigaTE, which is based on knowledge and insights from in-house experts and partner organizations. Cost projections can be found by acquiring access to the MMMCZCS' open source TCO model.

FuelEU Pooling Vessels sailing on e-ammonia or e-methanol can achieve cost parity with rising LSFO costs by 2035 or earlier with pooling

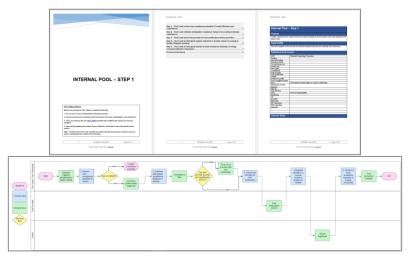


Fuel Cost of e-methanol with Pooling vs Business as Usual LSFO

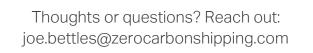


Note: Cost projections are from MMMCZCS's in-house transition modeling tool NavigaTE, which is based on knowledge and insights from in-house experts and partner organizations. Cost projections can be found by acquiring access to the MMMCZCS' open source TCO model

New FuelEU Pooling Project | Uncertainty prevents the industry from making investments based on potential benefits

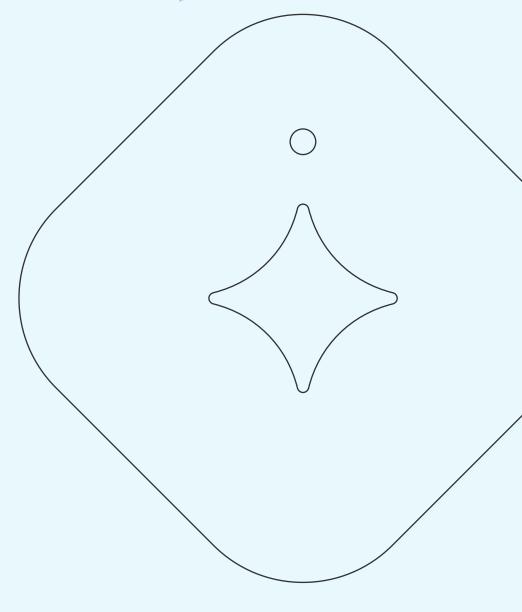


New FuelEU Pooling Project | Goal is to increase certainty on the value and practicalities of pooling



Commercial viability of alternative fuels with pooling using real world case studies

Operating procedures for pooling



Set of instructions that describes the step-bystep process to create and operate a pool

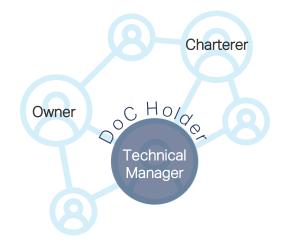
? Questions? Submit at slido.com using code #FuelEU

Commercial Contracts for FuelEU Pernille Palmelund Sørensen

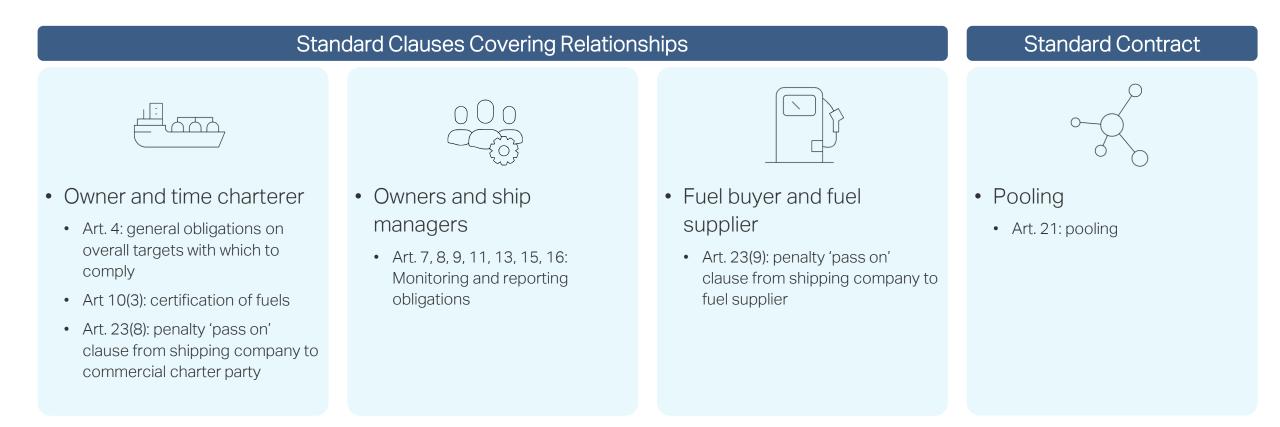
Ongoing work of a BIMCO subcommittee will develop FuelEU maritime clauses and contracts

Ongoing work at BIMCO

- Group of legal experts from the shipping and fuel industry
- Analyzing the FuelEU Maritime Regulation with a few to develop standard clauses and contracts on elements to be covered by commercial contracts
- Will be made available through the course of 2024


Contracts will be needed because the regulated entity in the FuelEU often does not have responsibility for the fuel

FuelEU Definition of Regulated Entity


- The obligations apply to ships individually.
- The regulated entity is the company, which is defined in line with the ISM Code

"company' means the shipowner or any other organisation or person such as the manager or the bareboat charterer, which has assumed the **responsibility for the operation of the ship** from the shipowner and has agreed to take over all the duties and responsibilities imposed by the International Management Code for the Safe Operation of Ships and for Pollution Prevention;" (FuelEU, Art 3(13))

• Thus, the DoC holder will generally be responsible, since the majority of shipowners delegate ISM Code responsibilities.

BIMCO subcommittee plans for standard clauses and contracts

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Answer polls at slido.com #FuelEU

age 74

? Questions? Submit at slido.com using code #FuelEU

Panel Q&A

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Ask questions at slide of the second second

Page 76

Thank you! The recording will be posted on our website

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

Visit our website <u>www.zerocarbonshipping.com</u> and make sure to follow us on LinkedIn to stay up to date with the latest news and events

Related Projects

FuelEU Pooling Commercial opportunities for alternative maritime fuels through pooling

Book and Claim Maritime Book & Claim System Strengthens Business Case for Green Shipping

IMO Mid-Measures Assess and inform formulation of IMO's forthcoming mid-term measures

Send questions to: 55@emsa.eutota

sit our website: <u>http://www.ans.com/ed.eu/transport_modes/maritim</u>